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e , The techuiques involvéed in some of the recent developments in low
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order perturbation theory are discussed in dstail. These include: the

: “. ' ‘ close two«wéy relationship between the perturbation solutions. and the

T R

variational prineiples; the existenck of solutions to. the perturbation

equations and théir conﬂérgence; the explicit and variational solutiong

g e

of the first order perturbation equation; double penturbétiqns and the

e

calculation of expectation values; the detérmination of second order
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propefties~(such as polarizability); estimatiorn of 6ff-diag6na1.and
time-dependent properties; fast comverging iteration procedureé; simpli-
fiéﬂ treatment of degene;ate or almosy; degenerate-perturbations; sum
rule techniques and their applicatioﬁ to intermolecular forces; and a
sho;t éurﬁey of the atomic 1/Z expansion and Hartree-Fock applications

of perturbation pr.dcedures.. ‘ ‘ { {: j W_)
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~In rquat ye&ra\theze has been a great increase of iﬁte;est inrthé
appilcatipn=o£‘partuzhgtion theory to. the funéamental problems of
quentum chemistry. Porturbation theory is designeq.té deallsystemat-
ically with the effects of small perturbations cn physical: systems when
. the effcctslof the pertuzbations are mathematically_tod difficult to. ,
calculate ez;aci:ly, and the pmopet’ciea of Ehe unper;‘:l-zz_'bed‘ systetﬁ- are -
kaocwn, It 1is thexefore usually tha appropriate tool for dealing w1th
the effecta of external fields, with tae ]ong—range interactions
beiween atong and moleculea, and with smali internal perturbatious
3uch as those that glve rige to the fine and hyperfine stcucnure.of
‘apectral lines, Pertuzbation theory hes been used for these PUTPOSES ;
- gince the iacaption.af quantum mechéhica, but'it is only recently thak .
o it hao been applied.sericnaly to vhat may be called the fuﬁd_amep't‘al o
?feﬁ bc:d;:;‘;r probigmes electron-repulsién and the many»ﬁentér:pculcmb--
field in mplecules. A . R | .

The new applications have been wainly to atoms. The reciprocal -

of the atomic number, 1/Z , yzovides a natural ?erturbation.parameter,%
gince the elec&ron-electron zepulsion terms have the farm (17z) . rlzl .
when the coordinatea are expressed in units of 2 ao"andﬁthg rest of. . . ;
the Hmmiitcaiam is independént of Z_.; The new applicgtions_may_beT “J? e ' ;
_divided into two gmoupa. The firat-con ists ok caleulatlons of energy | .
levels, and is g notural outgreuth of HylleraaF' classic-work'on;thew.

« . iz egpamaion for bwo-eiectron atems Ie includes the cnntinuation

oF Hyila"aas' calcu?ation Pn highor erders by Scherr and. collahorators,

the work of Dalgarno aud'Lipﬂerberg;Qn;the_1!%heag&pa;onsﬁwiphig5thg;,43
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and explicitly, that " the standard’ sﬁmmation“fbrmulae uf perturbation

Hartvee-ﬂock apprrximatioa for ntoms, ‘aiid egploratious by aryr ahd

~others on’ the unlted:aﬁom (ainglemcehter}Na@proach'EO“moleculeé.“‘The

applications-in-ﬁheﬂseebn& grouﬁ-afé tbitﬁé'caidhlatiéﬁ-of“expééféfibn*
valﬁes énd other'proﬁerties offaﬁoméfand‘mbleéuiéS} aud_até“bf*mﬁéh~ﬁ'?
more veceat origin, Tﬁéy‘includé calcuiétibné-beéuﬁ by Séézﬁﬁéiméffénﬂ
developed by Dalgarno and by Schwartz cu’ the polarizabi 1it1es and "huclear
Shlelding ceusfants ‘of "dtoms, and récént’ attempts ‘to extend theSe o

4deas to molecules.n-p- «u#tv«J“.L R I

Ehere'aﬁe*two‘péinéipar“reaéans'féx-the”éﬁcééﬁé'éf‘tﬁeséfﬁéﬁﬁ“**“

| apﬁlic&tions?'”?iést; sufficiéﬁt’aécufaéy'is7freqﬁenéIy”bbfaiﬁéd“f:dﬁF:'
’knauledme of 'd ‘firdt order perturbe& wave functlon. From such a Fupes”

-tion, the energy can be rumputed accurate £hrough the’ thlra order and

goeﬂfvalues-can'ﬁe cbtained for*thé‘éxpeétntion-vaIues ofﬁprépéxtiesf'”
other then'the enefgy. ' Second, & gééat”advéﬁikgé‘bf*ééiﬁﬁ§béﬁi6ngiﬁg6fy

is that the ‘functional form of the ?é%ﬁurbéd'wave'fﬁﬁ&tfﬁﬁ“igﬁéﬁapgdiﬁ

by the perturbation itself. This is in contrast with thié usidl methods

vhere the cholce of trigllfunétidﬁ"ié”atbitiarﬁf“?br:éﬁéﬁpiéf,SéﬂWartz

(195903, sthrcing uith thé simplest lydrogénic wave funetion, ‘obtaired’

a simple cloéedifdtm”beftﬂrbatisﬁ expression for ihe tharge defisity Gf

the heliﬁm.atnm, ﬂ&icn agrees .almost precisely with’ the charg* den31ty

PR 4

calculated with the use of Hylieraas’ 8 paramater “ave zunctlon.j;“

a

| The recent’ renewal of ‘interest iti"-tﬁé gbtenﬁiali‘ﬁ‘iés of perturbas ©

oo .
= s .. N « ¥ -
R B L IR S L ERT 1

tiom theory has been sParked by ‘thiree developments.f“

(a) It ha& iong beeu recognzzed v the' litaraturce Both implicltly

S . R SO DAL I TR B SO WL L Iy % RN A LK
theory_axe 'tormal holutioms of certaln‘znhamogenods equatione, whosé
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~approximations to the individual texms in the pexturbation series. The

- methods used to obtain variational solutions of the perturbatiocs equa-

‘of the wave function can be written in terms of accessible‘fﬁnbtiané"

by means of what may be caile&.ﬁalgarno’é'Interéﬁange‘Theoreﬁ,’uThis ‘

3
solution @ight be better acccmplished.in.scme other fashion. Moxeover -
in many cases -&n exéminétion of the equations revealied the-poésibilityﬁ
of solution imn close& form. However, in spite of successes;;such
techniques were not pursued systematically'and, curiously enough, are
rarely'mentionéd in the usual text books, Today, impressed by the'-
many fruitful appiications made by Dalgarno, by'Schwaxtz,fand byrgthers;
one is looking more and more to the equations themselves rather than to
their-ﬁﬁrmal solutions. Ihé methods used‘to cbtain explicit sclutions -
of the perturbation equations are ‘revieved intchapter?IIIA.;

.(b)‘.Although-closed solutions are possible in some piéblemSé‘in“a'
particular for many-one?electrop atomic problems; ;his is not the casze
when thn perturbation involves the twonpartigle eléctron repuision
potential -1[312 3 or~indeed;for'most problems. Faced wi;h this-sitﬁh
ation, there has been increasing'recognitioﬁ of:thg faét; pointed ouﬁ

long ago by Hylleraas, that omne can often get satisfaciory variational

tions argﬁfeviéwed in Chapter-IIISQI

(e) Whereas.the total energy calculated by means of approximate
wave functions is accurate up to the scecond order, most.physiéél. ' -
properties calculated with such functions are only accurate up to th@

first order, The first correction to approximate properiies for badness

R 2

S.m

is discussed and proved iq-chaéterflv._

Theae'deﬁelepmenté, vhich have been mainly applied to atqms;‘are
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far from having exhausted their usefulness, or thsir puder to stimulate
further work. Perturbatiom theory appears destised to play au increas-
ingly 'Eéortant Tole in‘quantum chemistry, a2nd it therefore seems
timely to zeview the basic thecry underlying the new developmeats in a '
thorough manner. The persent article is mot imtended to provide a
comprehensive account of all aspects of perturbation theory,. such as
those given in the ezcellent review articles of Bélgarno {1962 ) and

Preuss (1962 ). MNHexr are all the important new developments discussed,

_such as the infimite order perturbatlon “reatments asscciated with the

names of Brueckuér-(l?SS ), Lowdin (1962 ) and Primas {1961 }; oxr the
partial summation techuique of Kelly (1963 ). Insiead, wost of our
discussidﬁ is restricted to the first few orders of perturbaticm theory

and dgvoted to the recent devslopsments which have been most successful;

or to those that seem most promising, : e e

The oaly form of parturbation theory we diseuss in this article '

is the Rayleigh-Schrodinger {revieved in Chapter ZI) which was developed

by Lord Rayleigh for wibrating systems and intrcduced into quantum

mechanics by Schrcdinger.1 In this treatment, a Bumiltomian H "for a

gystem is regarded as comsisting of an umperturbed Hzmiltoaisa L

’

and a perturbation operator

[+

‘In the Rayleigh-Schredinger perturbatiom theory, the eigemvalues -B(A)

and eigenfunptiouelﬁg’(?\) of 'H.,are:expamﬂeﬂ in.pover series in A ,
The essential vole of A is to define the differemt orders oﬁ.peztﬁrbae
tion, aad this is a unique feature of the'anleighfﬁeh:edinger“pheory.

In certain problems, A has an obvicus physical significance.

i e L
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Cange.

thezwise, ® is usually assigned the value of umity. Thus the _

perturbatioﬁ equations-arise from the Schredinger equation
(HME)¥ mo R . . . " . . L+

by equating the coefficient of every individual power of A to‘zero.
There is a fery important consequence of this proéedure ﬁhich.it is..‘
énp;opriaﬁe to mention here, namely, that any theorem whlch is true for |
the exact solutions of the Schrcdlnger equatlon must have an analogue |
for the solntions of each perturbation equation separately, The mpst'
interestiﬁg exémples are the variatiomal ptiDCiplevtdisguS§Ed in Chapter_
V); the virial and hypervirial theorems, aﬁd the Eellmann:?eynman theore@.
1he variatlonal prlnc plg and perturbation theory a%e deeply igpe;i

tuined First, given a quantity accurate through a particular order

v

of perturbation, a corresponding variational primciple can be coastrgcted.

Second, glven a varlaiion:. r1BC1ple, 1nﬁ1v1dLal veriation prlnclples

for the different orders of perturbatlan can be derlved and pra?ide a
fruitful and practlcal source of apprcximate perturbation epergies agd

appzoximate perturbed Have Functlcns. A striking instance of the con—

nection is the fact that one of vhe most 1mportant theoremg 1n perturbae
tion theory, namely that knowledge of the n-th ozder wave function
suffices to determine the emexgy to order «2ntl) , is an immediate

consequence of the vari, ation prlnczple, as shown 1n Chapter II« These

R IrY “"1

and other aapectﬂ of uhe variatlon prznclple and varlatzonal appuaxima~

tiona are diacuased at - length in Ghapter v;h .
: AR T ;% “.i.‘ .‘;‘Q‘.__ti

& ﬁamlliar camplaint abuut nertuzbatzon theory la that uhen the

:;‘- iy A -'H-‘ £

pettucbatlon becomes 1arge, the treatment ceases to give meanlngfu’

- Cirrea b -
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results.‘ The usual rule of ﬁhﬁﬁb‘is:tﬁati%hé\enezgy'shifté should be

small compared with the spacings of the ﬁﬁpertﬁébe& 1e§e15;1 1 the

enevgy lewvels tend tb crogg, onme expects difficulties gnd special
metheds must be used. (see Chapter VII).

Howa@ex,?almbat'dégeﬁeraéy‘is the'ohiy'soﬁiée of difficulties.
Sometxmea the 61ergy lavela and eigenfunctions are not analytiu funﬂ- |
tions of the perLurbation parameter and no solutlons to the equatlons AR
exist. In other C&SES) the series may only be asymptotic.

The qnescions of the e&ﬁstence, nature, au& convergance of the

perburbation series pose difflcult mathematical’ problems. Neverthe;esé “

‘some very ?oﬁétful‘theoreumb"apparéntiy lititle kmown to

chemists,have beén proved by Rellich (1939 and 1940), Kato (1951a),
thchmacsh (1958) and others, which cover most o{ the appllcatlons of
interest in quantum chemlstry. A baslc theorem, dae orlglnally to s

Rellich (1939), is that the Raylelgh~8chrodinger perturbation'serlesJ

for ‘,.) and Y(A) converge for éﬁff.ié.:iently émall '?; if th:a

,unpertuzbed Hamllbonlan is self-adjoznt (Ch&pter FII) aud 1f two

canatants a and b 'can be found such that V¢ and’ H ¢ satlsfy |

i e . TSI |

the inequality

<V¢ VfP} < a<H¢' B, ¢>+b<¢,¢> P ¢ ) 2
foi éli-fuﬁctidﬁé ¢ in tﬁé ﬁoﬁaiﬁ:o% wﬁv'{ The most important apﬁlléﬁ;
-l . Tro by

'tion of Lhis theorem has been m&de by Fato (1951&), nho succeeded in

L i}
proving that it ls satisfied for any decom90uitioa vE the poﬁentiﬂl i)

. s LR 3¢

'of the non~?elativist5c Scnrodinger Hgmzltonian operator H for any

v

atnm, molecule or finite crystal, provided no new singularities strcnger

= o
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than Goulomb poles are intzaduced. In particular the thaoreﬁ is't§ﬁe
in the-foliowing impartént casesy . &

(a) The perturbation V is the EIectr;n repuiéioﬁ term in the -
potential U . This result justifies the IIZ'expansibn.ané'p?ovéé thae
it is asbgolutely cunvergent-for large enough 2 . Although Kato could
only cbtain the crude estimate 2 5'7 6 for the radius of convergence

I the tJo-elechon atam, the calculations of Scherr and Rnight (1963)
1nd1uated that the true value is as: 1ow as Z = 0. 8 .

(b) The perturbarion V 'is ‘the difference between'thé"méﬁchéntéi:l“'
coulomb potential terms in a molecule -and single-ceﬁter‘terﬁé for the
united atom nucleus. This applicat;on justifies the united atom (éingléi
center) exPansiops;z | B

‘For some unﬁounded operators the theorem of RBq. (1) is not satisfied
and the series does mot converge, but. is nevertheless valid in the
asymptotic sense; that is,.uaeful only up to a certain finite oxrder.

Rato (1951a) has derived very generai conditiong under which the perturba-

tion geries will at least be aéymptotic; although unforfunately these

~ ave harder. to verify that Eq. (1). 'An even less well-Dehaved class of
- pexrturbations, namely.those which are unbounded from ﬁelow, causes the =~ ? %
digerete spectrum of H0 to vanish and be repiaced by a contimuous —g‘ ;
lspectium. A typical example is the Stark effect for an atom vhere the

discrete energy levels are converted to metastable levels, The physicalz'

gituation is quite clear in such cases-of'“wéak guantizaﬁion“ and the : ' : §
series'gives sensible results for small Sﬁ but Ehe ﬁatheméﬁical |
ja;ss:ificacion is quite difffcult. ALl thesd aspects of the theory of R

= .. L - 4
e ox .

convergence are described in more detail inm _Chaptet- gL, ' ‘.
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The storting polnt im pertuvbstionm theory is.the division. of the
introsteble ‘Mlmﬁic—m H into 2 simple m?aszb*ﬂ_ pé‘;:t " .. Whose,
eigenfunciions are kaown, and a :'amaimﬂ:;‘ ¥ containing the awkward
terms. In the asctual treatment of atoms and molecules, houever, we .
are given H omd scme fumction ¢ which is an approximation to the
true wove fumerica 2 . The shoice of ¢ is generally made on the
bagia oﬁ_pﬁnygical imu@tﬂrm, ‘methematical expediency, ete, | ;Z!:,:is

desired to treat ¥ as a zero order wave fumction and use perturbation

theozy to improve it. In ovder to ayply t¢he usual formalism of perturba-

- tion theory it io aecessary' t0 .comstract an uaperturbed Hemiltonian . -

B, correcpending to ¢ . It is impws.:tmt to zeallze that this pzoblem .
cap always ke solved formally, as pointed cut by l‘smkinsén and Turner . ,,
(1953) and by Sternheicst '(1955})-. Be vrite the perturbed Hamiltonian

H in the form s R AR

Z=T+U S e

vheze T 1o the kinitic energy operater é_nd U is the .potential K = . -,

enerpy,. ascuzed to be a functica of cosrdinates. We them define the

- gperator Ho by : L U

g = T+T N | (3)

vhere . -, SRR

o N
- - ) - . N L i R S IS TP (P S e

and the value of & con be chosenr arbitvarily. Then it follows.fzom. ..,

Fas. (3) oud (&) that ¢ is om cigenfenction of a,. with eigenvalue € .,

e e B,

o g 1 Cewd -




LS

g0 that *
By = €% | (5)
The perturbation potential V .is then defined by (A=1)

The next‘atep in obtaining an improved wave function is to solve
the first order equatidn. Dalgarno and Lewis (1955} defined a function

w such'that the fivst order wave fundtion.is equal te Fy . The first

'order-eqdatian then becomes (for one electron),

v = @ -4V ., m

In analogy with eiectrﬁstatics, this is-a'Poiason-ty@e?equationﬂfor the
Tootential® T prcﬁuced by a charge distribution ..'-(2:\:)_11;:(? -< v}-)iy
in_é‘region of variable dielectric constaﬁt'r¢2 {Prager -and Hivschfelder,
196%). - When separsble, it can be integrated bﬁ quadrature; in which

case the By procedure has determined the integrating factor. When

.Bq. - (6) iz not separable, opproximate solutions for ‘T con be obtaiped

bﬁfuaing,the excellent variational procedures discussed inucﬁépter'lllB{

| The calculation. of physical properties of‘h system, othgr than thé g
emergy; is a problem of great importanée and intezes£, Ty?icalbﬁrope%tiés
are of tﬁ9 kinda, both associateﬁ with an operator -W ,ﬂand:frequently'

algo with an external Field ,&Q s thoy are considered in detail in

' Chapter-I¥. The simplést propecties arze straight expectation values, *

€1 » , ouch as a dipole mément, and caa be regarded as fivst ozder = -

perturbation energies for o perturbation MW . The other kind can be

e T R SR
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(e

1’<~:=.gami<5d as the second order per *turbah.on energies for the pert'un‘batio_a?

’f;:_ﬂ'lf s.and have the form

s o
a3 =< - <@ > .
wheze % ig the first order wave function corresponding to the
Hamz.ltonian H+ /u.ﬂ a typical e:cample is the electrlc pelarizability.
If the only wave functz.on ¥ -available is approximate, with an error
% =¥ of order A , the .calculated values of {u> end Q2> uill
alsc be in erTOr. bljrb\f:el_:ms of order A ; enly .the enexgy - <H } has
an error of order 7\2 . .‘ ‘The‘ prop]_.em .c_rf devising a practical way of S
L : calculating the leading coxrections has been solved by Dalgamo and i
: Si:e*aart (1956) , and by Schuwartz (1959), and is dlscussed in Ghap‘:er Iv. E
3 The simplest approach is to u.e.g a dovble perturhation procedure . '« o .y ”:
i (Dalgarno and, Stewart, 1958) ‘based on the Hagﬁitonign A | - ,
, R %; Hc,. ¥ ;W-s-/M-J R T IR
Since the calculation of Fhe_ first order energy for a perturbation only .
vequires tﬁe _c‘_orresponding zeroeﬁ:h_ ofder wave- function, the first order;:
?&«correction to the ﬂ'“pertu*bed energies {propexties associated vith .. |
W) only require perturbation solui.:.ons of the s:.ng ly perturhed -, .
Bamiltonddn . . . . .. e e e e i pins
H%' ==.E° +}Lﬂ TR 1 T .—': LA "*‘-".: ot .
. B it FE S T e I R E AL SRR - :
This is the point  of ‘Dalgarvo s 1ntarchanga 'L’heorem (Dalgaxne and .. - |
: Steaact, 1956 19SSj Its :meoz:cauce 13.es in the facu thae the "'badness”;
.of the in:l.f;:l.al wave function :i.s due. to -neglect of tuonpa?‘ticle electron i |
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repulgion terms which therefore appear in V and moke the first order

A ~equation impessible to solve éﬁblieitl&. The operator W, on the’
other hand, is usually the sum of one-particle terms, and the corre-
sponding /m{fequations‘are often easy to solve explicifly; The -
A -corrections to { W}l and £QP then involve simply an integration
over V , which isgéually Gtréightforwa:d; | |
Percurbatio? methods are particularly valuable for the caleulation’
of intermolecular potentials. The great adventage is taat the inter-
action energy is calculated directly rathex than obtained as-tﬁe
difference betﬁeen two large nmumbers. In this manner, Dalgarno and
Lyan (1956 and 1957) determined the long-range forces between two
hydrogen atoms in azqellent agrecment at R = 4ab ?4th.the.precise

variational calculations of Kolos and Roothaan (1960). - Other -perturba-.

tion calculations have been made by‘Dalgarno‘and.Lewis=(1955-and_1956),-

‘Dalgarnc and Stewart (1956), and by Salem (1360 and 1962). Since the ..

wave functions ave not known aécurately for the separated ﬁbleculesﬁ
the calculations of intermolecular potentials require not only double,
but triple perturbation techniqpes:}

The Egllawing more recent devglpym;nfs are deacxifedlin the later

chapters of the review.

L Perturbation Methods (Chapters VI:amd VII) .

Frequently it is sufficient to cbtain the fivst order perturbed

vave function since this permits the ealculation of thé energy accurate.

gthrough the third ozder. Indeed; frumfthg'Rayleighfschrodinger wave: . - .

function through the n-th ovder, the enezgy can be detezmiped through .

the {(2ad+l)-th ozder. However, even faster convergence can be obtained

T
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and ‘are presented heve for the firét‘timei3

> A L B I
12
; ‘ | |
i by sa iterative procedure (¥OPLY) such that, from the n=th iterated
; wave function, the emergy can ke c@@cgiated.up to terms imvolving the

ok - . . . S R

2“$1 péwer of the perturbation paéa@gtez,i_
A combination of pgfturbgtiop and variational techniques can be,
used (DE-FOP=VIM) to sdlveiprqblema involving degenerate ox almost- .
degenerate states without speciganqnéideratioq of the order in which
theidegene?acyfis bzoken up orzﬁor?y aboqg the crossing of tﬁe energies

ag the perturbation parsmeter increases.

- 2. Time Dependent Problems (Chapters VIII and IX) -

These ave of two kinds: Those in which the parturbation causes -

‘troneitions, and those in which the stationmary properties are modified -

by en ogcillating field. The techniques developed for time independeént

preblemg can bé'appiiad to both types. - Interchangé thesrems have been'™

 proved in both ‘cases under falrly general conditions by one of us (SIE)"

Chapter VIII is devoted. ™%
to second ovder steady states prop wwtles, and Chapter IX to the calcula-

L

tion of off-diagonal elementsi = - R T T
3. Sum Rules'(dhaptet_ﬁy
Useful Sum Rules cen frequently be obtained by colparing the
emplicit solutions to the perﬁurbatgan equations with their equivalent
gpectral representations expressed_inuiufinite'aezies;:‘The-famiiy

of sums f$nvolving oscillator strengths is of particilar interest since

it has ‘a wvide variety of physical gpplicacions.” 'Sum rules can now be '

mathematical trick vhich has beeﬁjpoiﬁteﬁ;but-byjmavroyannis'and””"‘*’

ATy - P ot e - . Rt LI T s Lt e T
ERAC U A TS SRR ERUI IS S P M S T R RO 2 N Ly e PR R PR SN

AR IR A7 S Py oy o

M e Mo st ek e

applied to dispersive intermoleculdt -forces;- thanks to an ingenioud

1 TG T O TS =, N e " sy Y S I, T . W5 . I e,
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- Stephen (1962). Beceuse of its importance, this application is reviewed

. in ponaiderable_Qeééil.

4. Applications (Chapter-XI) . - .

This chapter contains a list of veferences to the recent litevature

on applications of perturbation theory to quantum chemistry.:. An effort’

has been made to make the bibliography completele apart from references

to polarizability, nuclear shielding comstants, etc., which have recently

been reviecwed by Dalgarno (1963, . . - - -~ S .,

,? In proceeding from the formal theory to the practical applications
g - : |

-ﬁ many questions arise. For example, is: it really necessary or desirable:
?E to use Hariree-~Fock orbitals as the starting point for perturbation

M ‘ : . ' '

3

4.;3
L]

calculations (Szasz, 1963)? The success of the work of Dalgarno anmd

Aty

;.-.Js'-i:,:z-‘_"'“f

Stewars (1960) using Slater type orbitals with screening constants

iy

iR e

i
-

adjusted to make the first order perturbation vanish, suggests that

gimpler orbitals may provide a more convenient starting point, The

perturbation equations themselves mold the wave function into the

23 i v S
rdnrinr 15

proper form.

The idea of applying perturbation theory to improve the familiar _
; ] | I

0rbital model of atoms and molecules has been éteatly stamulated by

Binacnoglu peints out that the Hartree-Fock potential correctly represents

%3

&

! . A : , .

v Sinanoglu’s (1961) discussiors of the .electron correlaiion problem,
5 . -

£

§
é the behavior when the electrons are far apart. It foliows that the

ﬂ ?erturba&ion potential contains only.shnrtérauged‘elecéron—electrqn
interaction gtevms when the unperturbed-wave funetion is of the B@lf-‘

consiscent field type. Furthermore, because of the Pauli principle,
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1.

2.

3.

.. occurs (see ‘Chapter XI).

Wi
ffcm:ms TO CHAPTER I _
The Brillouin-Wigner or Feemberg perturbation series convérge- fastef
than ihe Rayleigh~-Schredinger, but they require. that the energy be

determined in an iterative manner.

Hote that it does not justify. expanslons in powers of internuclear
digtaences. These are, indeed, non-analytic in the simplest case of

é one~electron diatomic molecule, where in fact a term in Rslog R

The Interchange theorem for transitions has been proved independently

using a‘ variational method by Borowitz (private"_commication) .'
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II. PAYLEEGR-ECHTODINCER PRRTURBATION THEORY FOR A NON-DEGENERATE STATE

In oxder to lay the foundation for ﬁhe new ;ievelol;ﬁents s .le_t uﬁ | 1
review the Rayleigh-Schrodinger perturbation théofy for a non-degenerate '
state. The unpertuxbed.nam‘_ilto‘giadj Eo has the_com'plet.:e. set of nor-
malised' eigenfunctions V¥ f with the ‘correspond‘ing ene‘rg.i"es _E 3 : . The
pevturbed Homiltonian H = H, + ?.V has the eigenfunctions’ ‘IJ j ‘with
the cotreapamling encrgies ‘B I We fix oufattentioni. on thai:-,‘per;u;bed‘
gtate vhich in the limit as A approaches 'z'erd" has \Pq = Wq .angi

By = G where € is not degéﬁerate‘-. P el TR S At

" The basic assumption of the Rayleigh-*b‘cbrodinger theory is that

\P‘ and B may be apmded in power seri.es‘ in the perturbation param-

eters : : et b ‘;..::'-":u 8y
p- ZM‘“’ m E - Za @ e e e
In oxder to keep the notat:l.on from becoming too clumﬁy p tﬁe subac;ipt
."q"’ is mitted except v;ihere :I.I: :I.s necessaty to avoid confusicm between
different atates of the syst m. The power seties (1) are subs;:ituted
into the p_erl:urbal -Schrodinger equa‘t::lon.' s:lnce the re;ulting equation »
zust be true for all sufficiently smalll values of 71 P t_he coeffi_c:_lent £ ?

‘of each power of A in the equat:ion must be equal to zero. A'f‘h:l.s :

s A ot

lezds to the femily of perturbat:lon equat:lona. ' learly, si.nce the
state "q" is ncn-degenerate, ._y( ) =9 .and e(O)_ €y _go-that_ tha_
ze:oeth m:dct equation is , ' S ;

u;f '_T-.. 0 iER R e T ‘.":-..{: = '(2)

- e o P AT S PR e [ 35 N B G R T oG o1
R Nt o 8 PR T Y - T LUl 83 A (Wi (R 8 2 T2 AEH Baal e L SO 4§ 3G Vi E) 45
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uhere H; = Ho « € . The first order oqual:icm is
; ﬁ vwhere V! =V - 6(1) +« And the r-th order reiation_ is o %
£ P £ ) R N ' ST IR
s | N : 'u;\y(“) +v'v(-n'1) - 2 .'a(k)v(n-k) =23, )
7 i = [ ; ;e _
. : 5 - Tl . . 2 . LT = Sy X -kaz . F 2 & M .5 ae 3
p ; Normalization cunditions are requiged to complete the specification of
; ; : . : :
5 § ;- : > _
- ; - . the perturbed functions.
i i ‘ : - - . ,

LA - We require that the exact wave function P be normalized to unity.1
Sl Substituting the power series Eq. (2) in:o & ? \P>- 1 and requiring
. *§ that: the coefﬁcient of each pawer of A in this equation be individ-

1 _ua].l.y zero, we obtain the nomalization conditions for the var;lous orders
of perturbed wave functions,
bt Z(k,n-k) =0, mELees b1 0 FL - (8)
<y® O " Yor Wil |
‘ where (j,k) = t X . For a=1, thia givea. (0 1 + (1 0) =0,
which for teal functions 13 the fam:lliar orthogonality condition 0,1) =0.

Expreesiona for the petturbat:l.on energies can be obtained by taking

pier

t.he scalar product of Eqs. (3) and (4) with v . '_rhu_s s Lalfy B
.5(1) = L¥,WY o ' . @ (6).

€ (2.) - <7:W(n) - < V V'?(1)> h : (7)'
j = . n_z ' : L . . X | .
O I <,, v:'(n 1), Z ©,1 e(n k)" , "= 3"4’._. .
In deriving Eqs. (7) and (8), ve have assumed that H_ _is Hermitian.

b e R

1f V is also Hermitian, additional reiationo ‘can be _obi:a:lned for the
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.E(znl-l) - < (u) V'ﬁ(n)> Z e(k) Z(‘H-l+j"k n‘j) » 1= 2:3:""

17
higher ozder pecturbation energles by carrying out a sequence of -

algebraic manipulaticns of the perturbation equations, as explained 'in_

Appendix A. The wost important of these relati’ons are

€ = <y Dy | o
e - <i® 'v‘2’> (2’{0,2) + 1)} Can

€(2n) - <*(n 1 V'¢(n) > - Z e Z (ntj-k, n-j) s 'n = 2,3,
k=2 j=o (12a)
o

" k==2 j=0 (12b)

Bqs. (12) de#onot‘rate the welléknovm'theorém-thot' the pettﬁtbatioh

energy to- the (2:i+i.)-sr.’ order can be obtained from knowledge of the’

wave function perturbed through the n-th order. Hylleraas» (1930 ) first
showed that the emergy through G( 3) is determined by the wave function
through ‘3( D . Later, Dalgarno and Stewart (1956b) 3 Dupont-Boutdelet 3
'l.':l.ll:l.eu, and Guy (1960 : P and Sinanoglu (1961&) “made oxpl:lcit demonstra-
tions of the general theorem. Actually, this theorem is an 1mmediate
conaequence of the va:iational principle given in Chapt. v (Wigner, 1935 ;
Silvernam, 1952 ; aud Sinanoglu, 19613,. From the variational pri.nc:lple
ve knca thot 1f the trial wave function :I.s in error by order ?‘ ) ‘the
energy 1. 1n etror by order 1[ . Putt:lng 1( A Ptoyog;t?o:_ 3
theoren. ' | ¥, .

We shall have need for the explicit energy expectation -




: = » ’l," ; ]
E@ =< D (o), 8% @) > corresponding to W (n) , the perturbed wave -

function truncated after the n-th order term and normalized tec unity,

i 2 e = Y, JenTuneed Bedn 2 145 B
P = Z';\kv‘k),'n(n)' | o 13)
3 “ Here the D(n) is the normalization constant
i ‘ 2 - LT i n-k K ::‘ TS )
‘( D(n) = [1 + A Z‘;L Z(n-j.j-l-k)] : . (18)
| o s k"l £ TRy ; '
A The energy expectat:l.on is E (n) = < q\l(n) ,I-l‘? (n) ) Thus, we find
5 T & e aem LA e T
PR BT R A e 52 (2, 23 ¢ (3;,
- orats ey - ae‘1’+7‘€ 2] ae -
A ; i+ A%,
.! .

The results. for larger values of n -are g:l.ven in. Appendix A, .In general, -

the 6\::} .are aceurate through the.order of a2 71.._‘ and provide a

. seque.ece_,. ofp-.!,spp.er boundﬂ to the exact energy;.tg-which they converge.

3

Ve p_k_gansiano in ngerturbed ‘Wave Funct:l.ona R \

s In the uoual preaentation of Rayleigh-Schrodinger pertu bation

] theory, ‘the perturbed wave functione -are expressed in terma of a 8pectra1

l .

distribution of a complete function se:.' The formlee ere given 1n
: Append:l.x B- for a 3enera1 function aet which hae no relation to the un-
perturbed problem (w:ltb the possible excepti.on of one member of the set) .
Conaiderable simpliﬁcations are obtained if the function aet ‘i the

Jl -

'conpleto set of unpertutbed wave functions. Theo (’Delgamo, 1961 )

' uaing the notation v“‘ -<tj,v0k) and v' -<fj,v *k> 3

el o § o T ST R B T on wih 3%




€ - € | J Fhay
3 . -
- Z z tiv;k\yk . %Z' Va1'1q —y
)( 6 €) L (e . q
T k (Iéqb Ej)
W(a) - quV}RFE&E!; |
o < (€ P& @0 )
L .* ) II v w '
qj jq gk’'k - £$2) —9aii
. ZI(e €r2e - € a7 L (e- &)
i k i a ]
:Z' Z' vqivj'kvk ¥. .
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(17)

(18)

(19)

Here thz primed sigmas indicate the sum over all of the discrete states

plugs the integral over the continuum but omitting the state (or states)

with energy eq
The corresponding expressions for the second and third order

. perturbation energies are

@ _ Z' Vo'ig
Eq' Ek

and

t il :vi-v
(3 zl E'__._si_ik_ki__
€ - . .
| - L (€ €)Ce €Y

- (20)

(21)

As Brueckner (1955 ), Huby (1961 ), Primas (1961 ), and Lowdin (1962 )

have shown, compact explicit formulae for the higher order percﬁrbation '

" energiles and wave functions may. be written in termg of .“ha operator

vt a4 i e

et i i e A 0 38 BT




| Z <yl | e et T
(e,-€) S e s -,
‘ v'rhus' for example the énergies' are - - : " .
e = cymfvrer - PTawy (23)
4 e(s) -‘< *,VQ [V'QV'QV' - 6(3) - e(z){vlq.'_qv!}] VQ*> (24)
' g o N o B AT Lo ST gy e % T ?"._r_.__., -




iR, 1 SU:

21

FOOTNOTES TO CHAPTER II
1. There j.u another type of normalization which Is commonly useq.
Instead of requiring that < ‘P,\y>= 1 , the perturbed components
of the wave function are taken to be orthcgonal to the original
function, (O,n) = 0 for n = 1,2,°** ., This makes ' e(n) =<W,Vw(n-n> .
Or, according to F. Dupont-Bourdelet, J. Tillieu, and J. Cuy [J. Phys.

Radium 21, 776 (1960)] : -
:‘1_-:'1.211-1(-1
e(zn) - <v<n'1),W(n)> - 2-. X e(j)(kﬂn-'k‘-j)
k=1 j=n-k
n 2n-k . .
6(21:-!-1) - <v(“),vy(“)) w Z z E(j)(k,Zn-l-l-k-j) -
) k=1 j=nil-k

anostirt 87 B0 wsneesd nrieupe bsdyvistieg Ysnigizo 2di 3o dadi m.rll!'
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§ I1I. SOLITION OF PERTURBATION EQUATIONS

.

In thts chapter methodu'foriégiuiné tﬁé pertuftutiou:équationa of
Ruiiéigh-sthtodinger perturbation tteory are uiscuééed. .The n;th order
uquatidn (2-4) fur w(n) iuvoiué# all the uaué fuuctiuusﬂuf luwer
‘order, so that the equations must be solved step-wise sterting with the

fitwt order equation (2 3), substituting its solution 1nto the second, :

zolving the second order equation, and so on. The came is true for the
equations of double perturbation theory discussed in Chapter IV. The
basic problem is therefore to solve a first order perturbation equation

of the type

@ -enP+rw- eMy = o0 (1)

[+]

where Hb is the unperturbed Hamili:onian, % and € are the unperturbed

eigeafunction and energy (assumed non-degenerate) of the state under

e e

T S S A e NG TR A S TS o A ST o e e e e s

; ‘Q : congideration, and are the first order eigenfunction
and energy, and V 1is thg perturbation operator. The sclution of this | f
equation makes it possible to evaluate the second and third order
enérgies by means of Eqs. (2.7) and (2.9). chever»the recent develop-
ments mentioned in the intruduction have been more concerned with using
5 ' ‘the solution of this type of equation to obtain the first order cor-
rections to expectation values., 1In this case the_perturbution is the
operator W whose expectation value is sought.
The solution of perturbation equations is usually much easier

than that of the original perturbed equation because they are inhomo-

geneous differential équations for vhich general techniques are available,

whereas the original equation is an eigénvalue equation, This is




* found and their discovery is no longer a matter for hope. The same is
highcr multipple‘interaction terms occurring in the treatment of long-

‘in 'V must therefore be treated by alternative approximate methods
Chapter II and Appendix B. - The explicit solution of perturbation equa-

‘operators. Fortunately most'propefties of interest othér than the

‘simplify (1), ;nd which has been employed Very effectively by Dalgarno

where 'F 1is a scalar function of the coordinates to be ﬁgtermined; and

23

especially true in the most usual situation when Hb is. a one-electron
Heomiltonian or tlie sum of one-electron Hamiltonians. Unfortunately,
however, in the case of the perturbation of greatest importance, ramely

the electron repulsion terms ‘llrlz , analytic solutions have not been
true of other pwo-elecpron‘perﬁurbapions such as the dipole-dipole and
range forces. The £i;st o;der equations involving two-electron terms

such as the variation method discussed in section B of ﬁhis‘chapter or

the familiar method of expansion in.a complgte-set as diSCussed in

tions in closed form is therefore effectively limited to perturbations

which only inveclve one-electron operators or the sum of one-electron

energy are associated with operators W . of this kind.

A. Explicit Solution
There is a well known device in the treatment of inhomogeneous

differential equations (see Morse and Feshbach, 1953 ) which is used tq

and his colleagues (Dalgarno and Lewis, .1955. ). This is to: put

W(l) = Fy ; - .t2)

{9

to mote that .- ' & .0 s g G R L
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(B, - €)Fy = (4F - FHIY
so that (1) may be written
'[ﬂo:l“]v”'w =0, . o

'where the square brackets denote s commutator and V' =V - 6(1)
This form already has the advantage that it is usually unne essary to

know the explicit form of the unperturbed Hemiltonian H since

[ao,r] = [n,r]

as -‘.mng as the perturbation H - H is 'a scalar, and V' can be’

A

rep]aced by ll - € - '(1) ("ﬂking 7t-= 1) eqatidn 3 can then

- be written in the form

.['_n,r]w-n-(n- €- ey =0 W

To proceed further it is necessary to spe-ify the form of the
Yumiltonian. For the many electron Hamiltcaian (atomic units:

energy o~ ezlao and lsngth ~ ao ¥s."
"n -%Zv +U, ' | (5)
where the unperturbed potential energy Uo is a scalar, so that (3)

becomes

Z [v JF t - 2v'¢ | ¢6)

1f this equation is multiplied by ¢ and its complm: conjugate by

¥ , the sum of the: two equations can be¢ rearranged to give
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. e % . *= * % l ) ’ T3 . : a
Y vatwm = vt o
T
where we have assumed we can choose F to be reall' For simplicity

1y,

of presentarion we shall only considet the case when w is real s0 e

that (7) becomes
2 ' L2 X' : % I . . . )
vi(x;r ViF) = V'Y | (8)
i . ‘ '
The boundary conditions on the perturbed wave function, and therefore
on all W(n) » are the same as those on the unperturbed eigenfunction

4 » Thus on the boundaries at'infinity the conditions on F are:

A L L

] T me g
v, R o

This guarantees that the integral cf the right-hand side of (8) vanishea.
The solution F of (8) is of course arbitrary to the extent of an
additive constant, ‘which’ may‘be chosen so- that’ the‘orthogonality

ééndirion{ti;ﬁ)‘iéfsétiéfieé; that is

QLM =0 . a0

In terms of F the second order, energy _6(2) given by (2.7) is
X ‘ -

e = <> %)

.. . N B 3 i “ * B r
LT g e e N F . gxs  F % oaq R (TR Il T e 18

By substituting from (3) and;usigg_creen'sitheqrem_wg_gg;;

) =3

= -% <%ZW1F>2*> ; (2)
i ) :
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singce the surface integral vanighes berause of the boundary condition
(9). Thus the second ordsr energy need only involve 'V{fJ in the

integrand rather than F itself, and in principie only a-aingle inte-

~ gration of (8) is needed. In terms of P the third order eheréy.given

by (2.9) becomes

€ - Grwd - (13)
- 5) &y, oy
SYoropiy T W
- o¥ Ao : ¢ . e BT ‘

The 1n;qgial for the third order-ena:g§ thus involves F explicitiy

ﬂnd the forms (13) and (14) are only valid if F satisfiea the

otthogonality cunditicn (10)

‘.’

'1._Rgguctggg of the Many Electrton Equation
For completeness let us indicate hew the many electron problem

may be réduced_to on<-eleciron equations in the simplest case. This is

when the total Hamiltonian H is the sum of one-electron Hamiltonians

‘= Z{h(i).-t- zv(i)} tupe B ok o e, W - (15)
- :

The only significant remark to be made is that it is best to sepataﬁe

‘the many electron equationﬁintd’tha“one-electron equations’

.,_

ot Ay T (16)
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before considering the perturbaticn problem. The alternative is to
attempt to reduce the total first order equation, and is neither as
- simple nor as accurate. The one-electron fiist order perturbation

equations derived from (16) are
(h - <1)¢11) rv- €M@ -0 , an

and the total wave function correct to the first order in A for

each electron is now
o (0 1 |
2= b q{fé deadPY o, (18)
vwhere 65 is the anti-symmetrizer and the ¢'s include spin factors.

This procedure leads to simple sums over the electrons for all the

| perturbation energies; for example

| «» Ze“’ =Z<¢‘ S0
, 1

2. One-Dimensional Equsations

As an introduction to the solution of equation (8) let us consider |

the simplest case of a one-dimensional system described by a variable |
x confined to the interval  (a,b) . Equation (8) may then be integrated

directly to give -

.* g{ .- u(x). s dal ; SR T S § tarwa (20)

where




g
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s u(x) = 2f WEHOVEWHaf (21

ard the constanu of integration vanishes because of the boundary

i’ ' ' condition (9).

(2) Cround State, For the ground state in which the unperturbed wave

' ‘ , function ¥ does not possess any nodes insi&e the interval (a,b) ,

(20) may be 1ntegrated immediately to give"
Fx) = F(a) + f ucfn <f>df (22)
' a S :

',.;;‘ 1 as pointed out by Young and March (1’538 ). The one-dimensional equa-

‘tions for 6(2) ‘and 6(3)' corresponding to (11) and"(13)"can"be""'

R SR

! : written in terms of .!{ as

@ . M(x) - B ‘
| € *f [m) B T @3
21 3 {[ (2),2 } f‘
4 € -_- dx +zr-' W(x) d (24)
g ¥ e ks
o .3 ‘ (b) Excited: §t‘.atgs_. Consider now the case inm which *(x) is the 8

- n~-th unperturbed eige_q_fjmction ,wj;t!; ‘n simple zeros at 85855758,
in the interval (é,b) . This case has been treated by Brown and .
Hirschfelder (1963 ). If the first order wave function. 1< )‘ 1?

 well behaved the function F. will have sir sle poles at . a'l_ 28y 58,

- The direct integration of (20) to yield P presents difficulties .,
because M(x) does not i.n.general vanish at the nodes_'._of‘. t , and

for the same reason (23) and (24) are not va].:ld for exciteci states.

To avoid the singularities in these equations let us assume that,




B(x) by

- points aj . - By substituting (27) into the differential equation (20)
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Y,F and M are analytic functions in the vicinity of the real interval
(a,b) . It may be shown that equations (22) zand (23) cén then be

replaced by

F(x) = F(a) + 5&“ u(z)w’z(z)dz .- - (25)
a
and
é = -%f i‘(“;% dz o (26)

where the contours C in the z-plane do not pass through ‘a558y,00 0,8 -
A similar -equat:lon can be written for 6(3) in place of (24).
An alternative method for deali.ng with excite. states, more éuited

to numerical work, is to remove the singularities by subtracting out the

poles of F . This may be accomplished by defining a new f-mction

F=§--Zi. S . (.27)

and choosing the coefficients C, so that <& is anaiytic at the

3

ve get .

d;*. ._(_)_M X ..._.L__. S e (28)
dx
: v 2(2) =8 (x - 8 )

The ccefficients C, are therefére given by

3

¢y = u(aj)/[i'(aj)]‘  sion (3-1,2,’,,) 9 »i

Bquation (28) may now be integrated slong the real axis ‘to give : '+
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3w = d@+ [ e dg e

where

{
!
i
;
A
t -
i
4
L
:
&

A® = v (x)Z—-——‘— o : : (31)
ja (== 8 .

i and the second order energy is given by

- I[_A]dx-%z ;‘xT{_dx. (32)

i ]

% (c) Separsble Equstions. Direct quadrature, as in the one-dimensional
cartesian case above, is also possible when the original Schrodinger

equation is separable in curvilinear coordinates. In this case, as in

the reductioh of the many electron équation; it is advantageous to

TSRS 5

separate the exact Schrodinger -zquation irto ordirary differential .

eqﬁations first, end then to expand into the different orders of perturba-

4 tion. -This avoids,épurious cross terms in thé'enetéy of the second and

‘g “higher orders. -If the perturbation V <appear§'in two or more of the
/ ;% ' aepaiatéd equations'the methqd is really # multiple periurbation precedure
for independent pertutbationb,.qo that cross terms are rigorﬁusly absent.
g ' Details of the separation andsequagiqns are given in sopendix D, Thg
most.imporcant chemical application'is to the two-center problem in
molecules which s separable in confocai elliptic ﬁoordiﬁates (see

Chapter- XI). _ ;_ o | ST

3. Separation by Partial Expansion
The perturbation equations can be sclved expiicitly in a much

wider class of cases than the strictly sepafable one of the previous
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sub=-gection, When a one~electron equation of the form (1) is not.
separable as it stands, the first step towards finding a solu’l_::!.on_ig _
uvsually to expand the perturbation V and the wave function \y(l) in
terﬁs.of a comnplete orthogonal set in one or two of 'i.;_he' coordinates.

To illustrate the mefhod, congider fiz._‘st the important case of,a.sphgr:_l_-,

cally symmetric unperturbed wave function Y (xr) perturbed by a potential

V(r,0,0) which may be expanded in spherical harmonics L :

v o= Y ey eh T (39)

F may be similarly expanded to give

g ¢

P ) F,®T,00 S e
fym SR
By substituting these expé.nsions into {(8) and separating the harmonic

components we get

a (22%m\ L2, Y
2 TV 5 ) -2+ 1y fom. = Wy, @@= 2,005 £=0,1,2,--0).
This is a set of ordinary. 'linear"inhombgene;dus second order differential
equations which, although they are not directly. integrable by ‘quadratuie
for f # 0 , may be solved either by inspection or by standard procedures.

' From the formal standpoint the key to solving an equation of the
type (25) is a solution of the’ corresponding homogerieous  equation, which

may be writtea-

e LRt

Gl

!.1..2;1;4.25‘.1%@).‘%5.1@2:_11'; = 0 (36)
dr = ad r .
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-
If such a solution K 18 known we repeat the device (2) used in
simplifying the original perturbation equation and put
Im = X S @

By substituting into (35), multiplying by K and rearranging, we get
é-‘(‘ 2 ‘ 2 g = | - .
< ?!2‘ dr) RV ¥ | (38)

The equation is now ir the one-dimensional form discussed in sub-section

- 2(a) of . this Chapter and may be integrated immediately to gi.ve2

W = a9
ﬁhere
. |
Hpp(e) = 2 [ -s’wv;ﬁtda " . (0)

Poi the ground state Eq. (39) may be integrated again diréctly:.' l'cvn.:
excited states the u_nperturbed. wave function ¥ will possess nodes,
and so aiao may the solution K of the homogenecus:Eq. (36). This
a:l.ﬁution has been discussed 1p'sub-section 2(b) of this Chapter.
The singularities of £ may be 'éithgr avoided by integrating along.

a contour ",c in the complex plane which avoids the zeros of ¥ and

‘K , or ‘_l:hi poles may be subtracted out. For reasons of space we shall

give only the complex integral form of F which is

7, () = K ){f(o) + a.} 1)
fm ) f 3 '2‘2
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The second order energy can be written in a ‘form analogous to (26) "

o9 2 ,
® o
e® .y f['fx_] ds “2)

and likewise the third order eneirgy. In many ;ases, hdw;ver, it may
be easier and quicker to bbtain a particular integral of the inhomo~-
geneous equation ;han to solve the homogeneous one and integrate,

The case in which ¥ 1is an orbital eigenfunction with non-zero

+

angular momentum .L ,

£y

Ry (1)¥p,(0,0) . (43)

]

is similar in principle but somewhat more complicated in general, and
is therefore treated iﬁiAppendix E. ' However when the pértﬁfbation“v
is radial, that is for the componenet v , the first order equation

may ba integrated directly to give

r : , e ,
F(c) + f[ulszﬂlz ]ds : (44)
° :

F(r)
where
u(z) = 2 f s’R,V! R ds (45)
° ; . .

The second order energy can be written as usual either in the form

(see Brown and Hirschfelder, 1963 )

0 o, - , - 3
€@ .y f[“’.“&.]z;d@..-,. e T (46)

€D - f [%Lz]“’-%z f “°° d .<47>
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: where ‘@.j- are the zeros of R  .and
¢y = map/[amicayl? - o 48)
_r_(r) } ranzz _.L__: | W

{r = a

4. Sgcond and Higher Order Equations

So far we have only considered the first order equation, . The
éeeond order perturbation equatiocn corresponding to (1) cau be obtained
from (2.4) and is

@ - en®rvy® . @y 20 (50)
It has the same form as Eq. (1)'except';hat the inhomogeneous term
involves v( ) ;whicﬁ must be known before v(z? can be found, To.

solve Eq. (50) we therefore-put
T T S - (5D)

and suppose that 1(1) = Fy is known. Then by thc manipulations
described at the beginning of this section we get
veyve) = 2qwr- ey (52)

. ¥ 3 L]
v ol e

This equatibn is now of the aame.form_as Eq. (8),_anq:cap 391Y¢4.P¥,
the same techniques.

The greatest need for explicit fbrms df the second order ﬁerturba-
tion functions is in order to correct the zeroéth'order~approx1matign

‘to a second order property, this is discussed Chapter IV. The aearch

for explicit solutions of the highgr order equations follows the sama
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patiern as that of the first and second order equatinns. However .

they are not usually of special significance.

LY

B. Variational Soluf:ion .

When the unpertufbed equation is not separable, or when the partial
expansion technique requires an infinite series which only converges
slouly, it is nevertheless often possible to obtain a useful variational
approximation tb the perturbed wave funciions. This is indeed the only

- effective method when the perturbation is due to electron repulgion,

The basis of the variational apéroach is discussed fully in -
Chapter V. There is a variational principle of a very general kiqd
for each order of perturbation which may be derived from the Ritz
variation principle for the total energy. In practice it is natural
to choose a special form of these princiéles, of which the pro;o;yéé‘i

is that for the first order wave function introduced by Hylleraas (1930 ).

1. Hyllex2as Varistion Principle for Ground State

Hylleraas pointed cut that for the ground state of a system Eq.

(1) is equivalent to the variation principle

@, ™

where

2(2) - <.$(1)’(no - €)$(1)> + <‘%‘(1)’V.;F >+<¢,V':l7(l)> (5#)

and 3(1)'

is arbitrary; the equality in ¢(33) only holds when the
variation function¢1ﬁ(1)- ﬁ‘;), the true first order wave: function. The

principle is easy to prcve: by substituting '\;‘(1)' = ~¢(1) e S’,}'(D_ ' | 1

4 T

in (25 we get
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gD @ . z@;u),ﬁno PR ¢) I v'w])'#(Sv‘”',(no - eysy D
: A e o , (55) ‘
The term in . S vanishes because of (1) and the term in 52 is positive
| because € is the lowest eigenvalue of 'Ho . Clearly the same argu-
'ment‘alao applies to 'eicited states which atre the lowest of each symmetry
class of the total Hamiltonian H = 'H + AV .
If the first order eqmtions cannot be solved analytically it
may nevertheless be possible to get a good approximation to € (2
(1) 'by inserting a trial function t( ) in (54) and making E.( )
stationary with respect to the variation’ parameters appearing in $( )
If the tr:l.al function is a linear combination of orthogonal functions
¢ then 6(2) has a form similar to Eq. (B.6). This procedure was
introduced by Hylleraasvand has been used by him (1956;:1958) in
apbroxiﬁatin# to the second urder energy in the 1/2 expansion of two-
electren atoms. This vork on He-like systems has been continued to
hi@ér orders of perturbation .of Scherr and Knight (1963 ), and is
discussed in Chapter-XI. | T a ¥
One of the most important applications of the va_r._'iatizonal principle
is to determine an a_pproximate *(1) in otdér to 'calcul'a.-te the first
order corrections toA expectation values (sze Chapter IV). In cases
where the unperturbed wave function ¥ is not knouwn exactly, Eq. (54)
may still be used to determine an approximate v( D by maki.ng € e@
stationazy, but in such a case E( 2) ~is no longer a correct variational

app:oxmauon to em . This approachhm been used e"te““"el" in

abield:lng calwlations aud is further disﬂussed in Chapter v (see 1n

particular footmote 8, where the functional G (2 is denoted by JH ).
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(a) Dixichlet Form of Hylleraas Principle. If we put ﬁ(l) ='§b"as

~n N
in Bq. (2) and regard the magnitude of F as a variable,ve can minimize

A

??(2) explicitly to geé'a form homogeneous in F

=2 _ v wEy
¢ {U¥E €Iy (56)

The denominator in thie expression can be written
~ e ! o o~
<u,F@E, - €)Yy = Sy FEF-F)Y >
and if Ho has the form of Eq.. (5) then
Vi ~ ~ o~ 2 oy
VF@¥ - F)y = &Z W, H° - %Zvi &5
i | .
On integrating this expression we get
o ~ ~ -
<“':F(H°F“’ FHO)W> o %(V:Z(vil?) v>

provided that the surface integrels of ¥ FV f' ~vanish, = Equation (56)

can then be written

<vs zwi%')zv 7
i

It i clear from this form that the second order emergy for the ground
state 18 always negative. »
Prager and Hirschfelder (1963 ) have recently pointed out that the

firat order Eq. (8) is analogoua to a 3N-dimensional Poisson's equation

in electrostatics, F playing the role of the electrostatic potential

vz that of a variable dielectric constant and -$V'¢I2x that of the

charge density. The variation principle in the form (57) is vell
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of a charge distribution.

wave functions tor the lower states arve known :

kno-.m_in electrostatics as 'the.Di_richlet principle for the self anergy
A particularly aimple general type of variation function which has

proved useful in connection with this formula when V is scalar is

o

F = e - (58)

which leads to

P - -2 St e(ﬂ) | (59)
Z(vi” P L

'Unfottunately *be denominator divergea in the important case of electron

repulsion so that € v ) =0,

" . "
[ ] -y o W
"2 * -tur

2, Extension of Hxlleraaa Principle to. Excited States

The risual extension of the Ritz Variation principle to excited

-states reauires knowledge of the exact perturbed wave functions of the

lover’ atates of the same symmetry. Approximate energies and wave

functions for the excited states can of course be ootn.».ned in the

. process of minimizing thetrial e'nergyrexpresaion for the ground state,

but in general these approximetioﬂe are unbounded. The only caee in .
which the approximate energy is an upper bound to the eM.ited state

energy is when it ia the loweat atate of a given aymetry type. An
important advantage of the more restricted variation primiple f.or the
second order - energy is that s as shown by Sinanoglu (19611;), it can be

fairly easily modified to apply to an excited atate if the unperturbed

X . : s ‘..-.’_ €

&

consider thve veriation 5€(2) fc.r the ex..ited atate q when

", l_'-" Zat o 0 LS Vome "ol HE -{2 "”5' TE L3 A ' .‘,nh""a (14 '»" W ':Jl"a'




""(12) is stationary with respect to changes 5*(1)

o]

&P = <5V P, - e)Swm) (60

The reason this is not always positive is I:hat the variations will in
general contain components "'\pl;(lc < q) which give rise to terms . .
(Gk - é.q) .whi.ch are neggtive. These-ccrmronent:s are in fact kpown
exactly from perturbati.on. 'theory, .and the variationall method .auggested
by Sinanoglu is to insert them in the ficst order trial wave funcf_ion
?:‘1) and to vary only that part of 7;7;1) which is orthogonal to all

the lower states. That is, we put

~(1)  _ Z‘ _Vkq n o
¥, - et X (61)
k<q . o
vhere
pXP> =0 <o (62)

By substitul:ing (61) into-(54) we get

~ il
E((lz) Z _..._3_...__. + <'X(1) (E - 6 )X(l)> B 2<‘X(1) lw )

q k
k<g ( 6 3)

wﬁere- Vi=V - (1) . Let ‘X;D be the exact part of i'( D orthog-
onal to {rk(k < q) ;. and put —x(l) 'x(l) + S'X(I) « Then by the
analogue of Eq. (55) we have

Eff) (2) = (87(“’ - eq)sxf}’) 20 . (64)
for variations 5%31) for wh.ich' | - :

R 1 SOXR ( < q) | 65)
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‘Whereas the'exact;. solutions v‘(ll) of the first order equations.

for different. states q would yield wave functions orthogonal to the

first order in A 3 this is not generally the case for vériational

approximations. The conditions under which it is true are derived in

Chapter V, -

" Variation :Princigl'e for Second Order Perturbation Eguai:iozv o
- Tﬁé variation principle of the leleraas type (53) for the second

order perturbation funct:[on v( ) given ‘by equation {50) is
S"“') 2 | (4) ‘ | l. .. (66)

whera

T® - KTD, @, - e FD) GO 5Dy 4 (FO D)

- e(z’ [<7® 2+ (m‘z’>] | )

(1) is the exact solutian of (1) ard 1(2) is arbitrary. For cases

‘in which (50) cannot be solved a.plicitly it is therefore pos‘a-ibie to

obtain a variational approximat:l.on for 1( 2 by making €(4)

stnti.onary with respect to parameters appearing in the tr:lal function

| ‘*\2) . .An obvi.ous drawback to th:ls procedure is that it requirea an ,
exact ﬁ( ) 3 aml 1f t( ) can be obtained explicitly thenpo in all

likell‘:lhood can *(2) "and the problem is not cae reqd:@r{ng i:hé. varia-

tional. approu:imaticn. The di-fﬂcnlty can be overcome dn principle by

adopting the approach of chapter v, which is to teformlate the mmmd

order stage in pe_rtu.v.bltion .theory as a new first order problem,

™
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C. Variational Principles for Lower Boumnds to the Energy =+ -

In this section we shall discuss two other variation principles
which, unlike the Ritz principle, give lover bqundslto :ﬁ; energy of
the ground state. The first of these, due to Temple (1928 ), applies
" to all orders of the eneré&, butlhae tﬁe disadventege of-;equiring
knowledge of the unperturbed energy of an evrited state. The second
which has been discovered recently by Prager and Hirschfelder (1963 ),
is specifically for the second order energy and does not require

knowledge of an excited state.

% 1. Téemple Principle

This principle (Temple, 1928 ; Hylleraas, 1961') is based on the

inequality for the exact ‘Haailtonian - Rt Sl RIS et S
’-'HY'.::- ,.., 2l . Ay RN T Fuiib-uae
{a-z)Y@-zp¥r>0 TPRIRPRRIE. L

vhere E_ 'am':l',nl are the two lowest eigenvalues of H (of a given
I e - . A Lo T A

symmetry) and ¥ is any variation  function. By means of the usual

perturbation expansion we can deduce a second oxder result which may

be combined with: (53) to give _
e<2) e(2) c % od 2

Q

*

where € (2) i's gi.ven ‘by (54) l’rager and lurschfeider (1963 ) have

(=

improved th‘e upper bound further by optimizing with respect to the
magnitude of 1&( ) wh:lch leada to NERTH el

X L% ) 7 G Sl s
€1 : eo - Bo . d % i , » 454-‘“22;-“{:\_‘

@ 5 .

-
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g b » e "ot - :j_
7 k | e - ‘ v'v (n - ‘E )'i(‘)‘ - vl
L = < ‘*‘?)"""o> - < ﬁg; o go o
- . 3 ~1 . 0 T RETEI. "(71).
' (1) ~(1)
<(H° N eo)*o ’(no - € N > "’(1) ~{1)
e € - € | ~K¥q, 208, = €%
'i'he simpler inequality ‘
. H S SO, |
€? (> | al® 72
51 eo &% el — '€° o s " B :
. k1 '

s | o

: foll.(wo either by droppinsthe positive term A'le or by setting

"‘(1)

- It can-also be obtained from t:he exact perturbation expan-

~-sion -(2.20) by approximating the denominat_:_ors. € - §° by . € - €

"k 1 o
and using the closure relation for the complete unperturbed set *n

it io originally due to UnsBld (1927'). It is interesting to mote3

._t.hat if this approximation is made in ‘the sum (2. 17) for the first

,order ‘wave function we get the form -(58),

Wl ik Howns dmasds
L. . i o'}

I, S P

-

‘rhe Temple variation principle and the crude fixe.. sower bound

iy (72) suffer - from the disadvantage that they require a knowledge of the

unperturbed energy 6 of the first excited state which is coupled to

the gtound etate by the pettv"botion v . 'rhis may not be known

2. Analopue of Thomson's" ?rinc‘tgl‘e"‘ 2t

Tho electrostatic mlogy ment:lmed above has recently been

:"'fruitfully exploited by ::nger ard !lirschfelder (1963 ) t:o provide a

‘varjational lower bound for ng) which does nct require knowledge




43

of 51 . The principle in question is the analogue of Thomson's

o principle in electrostatics, and may be stated in the~ form.
: €7 2 -5 ){¥,88v, ) , (74)
i

where the trial vectors ﬁi satisfy the equation -

N . g
Yorw e = -wgy, @5)
i : '

end the boundary cond't-ioné

- ﬁozgi = 0 on boundaries - . - (76)

but are otherwise ,arb:l\.t,r.ary. The equality holds if and only:if

. E; = - ViF " wheﬁ:(74) reduces to (12). The proof is simple. Substitute
:G:i = - Vil’ + 5?1 into (74) to get |
”» 2 ) ~ - . . ~ e
€D = -x)<0BEvey= €2 ) uTF BTN, < ) (hpe8E-5w)
i i i
a7

But y

BT EEEY = vy 288D - v 28T (78)

The second texm vanishbes by (75) and the integral of the first term

by (76). Hence
. ~(2) 2) Y, e e
€7 = e - *Z(*o" G, 5Cv )
i _ :

and the inequality is proved. In the three-dimensional case the diffi-

culty of obtaining a vector solution of (75) can be overcome by putting




A, - -'.--2 ;o | » BRI - |
B A7 [V<§+¢)+g_|A NPT TP )
where § is a solution of t:hé Poﬁaon.equation
(L : :
P oy w-eMy, . (s0)

glven by

e R
- €y
@ = -5 f . T (81)

I.E".f.'l g L

¢ is a solution of Laplace'’s equation chosen so that the boundary
o 1 conditions V(é +¢) = 0 are satisfied, and D isa bector such

that divd = 0 und which vanishes at the boundary, but is othe.rwiseil

arbitrary.
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- FOOTWOTES TO CHAPTER IIX

This is possible if the perturbation V is a real Hermitian

operator, vhich is ucually the case. The only important ekcéptidne

are magnetic perturbatibg&

-

Attention must be paid to the behavior of the right-hand side of

Eq. (38) at the lower limit when r -0 . For example, assuhting

¥ #0, v, y=rf and K2 S

at the origin, we must have
k < 2+-£ in order that M(x) exists. It will t 'ually;be' possiﬁle
to find a solution K(r) of Bq. (36) which behaves corzect:l'y_at”

the originm.

b 18

The authors are indebted to Mr. W. J. Meath for this observation.
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- IV, EXPECTATION VALUES AND DOUBLE PEBTURBAIION THEORY

.;n this chapter the perturbation theory of expectation values
e{ operators other than the emergy is discussed. The most important
properties of particular states of a system are of two kinds, and can
be.written‘as the e#pectation values of two different kinds of operators.
First order properties, such as permanent dipole and quadrupole
moments, diamagnetic susceptibilities, charge denaities at the nucleus,
are the straight expectation values of operators W, wh1ch are usually
the sum. of one-electron operators. For a system with Hamil;onian H
in a state with energy and normalized eigenfunction §l7 the.exﬁecta-

tion value of W is simply
u>=<@al> . | w

Such expectation values can be brought within the framework of perturba-

tion theory by introducing‘a fictitious Hamiltonian

’{4- B+ W

- with- eigenvalues E ()L) s 80 that 2 (o) =8 . 'i‘hen since W= 3#]3}1.,

by the thlmann-?eynman theorem,

<:":> = *(‘53;33¥,Q}L.€E )’ 2
-(a!EIQ}L)Y _— N

(2)

(1)

'rhg;':w‘ can be'tega:ded as a first-order pertutbatiou energy E

in the perturbation expansion of Ei :

2. x+;x£(1)+ 26D 4 oen 3)
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Sccond order properties include electric pola;izabilities, para-
magnetic sdaceptibilitiea, optical rotary ccnstants, chemical shifts,
nuclear spin-spin coupling constants, nuclear shielding constants, long
range Van der Waals interaction congtants. . These are all essentiully
second oxder energies 13(2) associated with the Hamiltonian ;ﬁi. -
(which in this cagse will uaually hav> phyéical significance) aund can ...

.be-writpen in form - - . e s g ' AT R e L B
) = we*€npty, = Aw-<Y> @
wh;re 7{ is the qolution of the»equation : |

@-pYr@-<om¥ao . i

£ Ng

Second order properties can be written formally as expectation values -
of operators 1uvolv;ng.the inverse of (4 - E) ; thus - Q can be re-

garded as the operator
Q = - @- <udy@-n - Lwd) ”'   (6)

Since the exact eigenfunctions W of many-electron atoms ‘and-

rolecules .are unknown, the calculation of first and second order

‘properties starts with approximate wave functions ¢ . The approximate -

expectation yﬁluea calculated in this way compare unfavorably inm: - .:i:
. accuracy with the enexgy, because whereas knowledge'of an appreximate
wave function ¢ is aufficiegt;to-calculate the energy through first o
orﬁerlin_che error, this is not true in general fpr.anyvother-opgratOt. 3
The correctionn to such approzimate expecgﬁt;ou values: are therefore ' -

a ﬁgtter of importance. The Hamiltonian H  can be written in the form °
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B = H + AV

where Bo is the approximate (unperturbed) Hamiltonian corresponding

to the spproxirate wave function V¢ (= v(O)) and AV is the remainder

vhich is responsible for the corrections. Since expectation values
can be regarded g2s perturbastion emergies asgociated with an operator . .
W , the appropriate tool for calculating the corrections in a systematic

ponnar is a double perturbation theory based on the Hamiltonian

P6= m +Avipw . )

This approach has been used extensively by Dalgarno and his collaborators
(Dalgarno and Lewis, 1955 ; Dalgarmo and Stewart, 1§585) 'aﬁd is the : .
gubject of the present chapter.

Attention is maturally focussed on the leading corrections of |

first order in the actual. or fictitious perturbation parameter A .. .

At first sight even these seem impossibly difficult to obtain explicitly
L . (1)

because 'they involve perturbed wave functions such as ¥ _» glven by

-Bg. (3.1) for the case in which the perturbation involves the two-

electron yepulsion terms. ?ortunatelj— it is not in fact ne_c;essary to

-find such wave functions in order to cvaluate the first order- cor-

rections to ezpectai;ion values, as the corrections can be expressed

entirely in terms of integrals involving oaly the acceﬁaib’le solutions . v 8
of first ordcs pexturbation equaticas with qne-electron perturbation

terms. The.theorem permitting this alternmative form has been exploited -

very thoronghly for atoms by Dalgerno and his collaborators {1¢35.:, -

1958b, 1960 ), and together with the incegrability of the one-electron
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first-order equations has allowed them to evaluate the leading
corrections to the expectation values for a variety of operators. For
this reason we refer to the relation as Dalgarno's Interchange Theorem;
it is derived in Section B of this Chapter.

Schwartz {1959 ) has developed what appears to be a different
approach in that he deliberately avolds the use of a Hamiltonian Ho 5
corresponding to the apprcxzimate wave function {qand bases his
method on a variation principle (see Chapter V). However, since he
too seeks to calculate < W» and < Q) correct to the first ordér
in ¥- ¥ , the results are equivalent to those of double perturbatiom
theory, as we shall shcow. It should be emphasized that, as stated in
the Intrecduction, a Hamiltonian -Hol can always be constructed and
used in the formal development of perturbation theory. An interesting
feature revealed by Schwartz's approach I1s that Ho may then be

eliminated from the final formulae if desired.

A. Double Perturbation Theory

The Rayleigh-Schrodinger perturbation formulae of Chaéter II are
easy to generalize to double perturbation probiems where the Hamiltonian
ﬁ%—is given by Eq. (7). The basic assumption is that the wave func-
tion € and energy & for the perturbed state can be expanded in

a double power series in' A and M,

*‘?Z z;\“ﬂ“‘*‘“"“’_ 5o . ®

n=¢ m=0

0 oo ' o |
E- Z zi\f‘}&“ L T e (9

n=0 m=0
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are

(n)

The resulting perturbation equations for ¥

~ the same as-Eqs. {(2.3) through (2.10) with v(n,,O) replacing ¥

and e(n,O) replacing ﬁ(n)’.‘ Similarly, the relatioms for *(Q,n)__ .

and €™ 4re the same as Bys. (2.3) through (2.10) with *(O{n)
. _

‘replacing .v(“’ 5 e(o’“) replacing e(n) s W replacing V and

H' =W - Q(O'I) replacing V' . - It is only the mixed perturbation

. equations which are essentially new, the general member being

n m o
30*(n,'m) + w(n-}ﬁ#) ,.%yx(“:m"-? - Z Z .e‘(j,k)*(n'j:m'k) (o)

j=o0 k=0

In order that @ _be normalized to unity for all values Jf A

and _M , the perturbed wave functions w(j’k) must satisfy the

conditions, analogous to Eq. (2.5);

Z i(v(bk}”(n-i sm-k) > = 6110 5m° , nm= 0’1,2, . | (1.1)‘
J=o0 k=0 . ' - ' ' ’

€ (n,m) can be obtained by

A general expréssion for the mixed order

multiplying Eq. (2.22) by 7* and integrating over all spacez,

€™ o Cy,w® L™ >4 Gy

n m (12)
(j,k) (n-} sm~k) -
N Y1 8 6, 8, A 1< >
j=o k=0

These double perturbation energies can be expressed in a variety of

forms, some of which are discussed in Seé_tiop'n.

1. BExpectation Values
The first and second order properties (W) and ( 'Q')

associated with an operator ‘W can be expanded in powerb of the
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perturbation parameter A , ‘and the éoefflcient_s expressed i Fatan

e(n}m) ’.

-of the pertﬁrbation energies ' The :general" connection can

- be made byﬂ comparin; Bqs. (3) and (9), which leads to the expansions .
. - “ ) ) ‘ : -
' n _(n,m) '
- % € , m= 0,10 . (13)
n=o0 v

The corresponding perturbed wait:e functions are gi’ven by

Yo S" B®) a0l . (14)

nuo

(a) Fizst Order Properties. The first order proberty <W > defined

by Eq. {1) can be expanded in povers of A by means of Eq. (14):

) - z ZG(“ P D 3 | (152)

n=9

- <w,w> + A °__),w> o w(l °’)] SRTTI
| | )
In this form the first order correction involves \7(1 0), .wh.ic;h is

the solution of the equation .

a, - et ey =0 a6 s

thai: has been made orthogonal to ¥ . Equation (15) is useless for

explicit calct;lation since Eq. (16) cannot be solved :li\ closed form
if V contains two-particle electron repulsion terms. Note that.
since W =:.E(1) , the corrections in ®Bq, (15) 'can also be wxfitten in
the' form | |

<"> X ™ | a7

n=o
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(b) Second Oxder Properties. The second order property . < Q ) dpfj.ned
by Eq. (2) can be expanded in powers of A by means of Bq. (14):., |,

{e) = Z Z’(v(k »1) < (n -k 0) > et (183)

k=° s =
= LD w) + h[(w“ D + <¢(1 0 AR LR
. (18b)

where 1(0’ 1 is the solution of-

@ - €D ewy =0 )

by

and '*'(1,1) is the solution of Eq. (10) withn '-'-‘m'- 1,
L1 gog D) 3 ey (1,007 L
(Ho - €)Y V'f “'V B .70 . (20)

'rhe initial approximation for < Q) 5 given by the first term of

'Bq. (181:), has the same form as a seconrl order energy, and requires

"for its evaluation the solution of Eq. (19a). As discussed in Chapter

IIIA, an equation of this type can frequently be éblved explicitly = .

when W 1s a one-~particle cperator by putting \y( 1) o F\r 3 sb; that '

_it assumes the form of Eq. (3.3), namely

[B e]v+uy =0 . . (M

If H - H = ?\V is a function of coordinat:es only we can’ go one step

further and eliminate Ho to get Schwartz' 's»'(1959 ) foml e A AR

‘.l

- e | " ) -
pi I B S B o . s o ry

[k’?]*-#w*- " o - ‘ '.,.,,,.(1.99}




As far as the correction turms are coﬁcernéd, however, Eq. (20)

is no easier to solve than Eq. (16). Thus the form (18) is of little

practical interest for calculating the correction terms. lNote that

; -gince 0> ==-E(2) the corrections may elso be written in che form

3 @-Swen L

n=0
B, Dalgarno's Interchange Theoram
: The general form of this theorem (Dalgarno and Stewart, 1958p)
' ' '
k allaws ‘one to express the mixed perturbation energiezs & (1,m) entirely
in terms of the W-perturbed fupctions v(O,m) To establish the com-
"
£ nzction it is convenient to introduce the Hg_ngil_tonian
By = Bobgpwo @
S » uit.'h eigenfunctions 'K and eigenvalues E* The perturbation :
1% | expansions of ')& (normalized) and E* are given by Eqs.. (8) and
¥ (9) a8
; ik .
o ,
X~ ZM‘ -, | 23)
m=0 .
,“l ¥ &
0 . ¢
' Let us now regard ‘)5{— as the single perturbation Hamiltonian

. Fe= g_,,,.';..;\v '4 _ o | (25)

The first br&ef energy is simply

B




ng _-4‘__.“_% . I 2 -
¥
' s 54
= e )
\ % i ] H
- ﬂn <7v17
| z ] Eoo ek e (26) .
, k) -
(0,m-2),Vy TP 1 ey S
o Z A Y(v Sl ) |
g ; Y k”o i Yt R T v. = it £ g, vt : W e 1
!? ; But by the definii::lon nf . 3(1) . K2 follws from (9) that
- | (1,m) | N :
Zﬂn é 3 | (27)
= ‘l' il therefore by comparing Eqa. (26) and (27),
- ' %F_! . : o ___ . T ) ' 2 T
AR ' ~. - o ;
T g e(l,m) iq,(o m=k) W(Q k) i o 8
" This proves that: the integrals:in:Eqs, (15) and (13) invelving W(l ST o
can be interchanged for others -involving _W(O,mfl) > which is the , '
content ‘0f the Interchange Theorem, o :
. o (a): E’irst Order Properties. By using Eq.- (28) for’ EU"O)
S P—*Pecﬁation value of W through the first order ‘ean be written ke éﬁe
P 7 _ iy
form (Dalgarno and Stewart, 1956p) ey
e .l ‘
i : | | _
§ 0,1 S (¢ 1 § INyg
i SCud = rwd + ALYOD,w ) + Cow O] v
| ' ' - (29a)
, where *(0, 1 is the aolution of ‘Eq, (19). But putt::l_ng *(0,1) = F¥
, ‘ | and AV e=H- H Eq.. (29a) can be written fn the form derived by
3 Schwartz (1959 )

(“ > <$, EW + F(R H) +- (H H)F:IQ > , {29%) -

where F 18 given. by Eq.. (19c) and, following Schwmrtz, = <\h1‘1¢>

has been. introduced to free ? ‘from the usual orthogonal:lty restri.et:ion




33

{y,Fy) = 0 . Since Zq. (19) can usually be solved explicitly, and .. ..
the integrations in Eqs. (29) are straightforward, ( W ) can now be

calculated é.aactly to the same order of accuracy as the energy.

(b) Second Order Properties. In a similar fashion tke use of Eq. (28)
for 6(2,1) allows the second ordar property (Q) to e weltten

iu the form
2> = KOV + AT, w> + (v WD+ (0D vy 5 0y]
e, (308"

where the function *(0,2) is the solution of the second order single

perturbation equation

B - P pany@®D L @Dy L L (a1a)
Schwartz's (1959 ) form of Eq. (30a) can be obtained in a similar .. .
fashion to.Eq. (?9b) by putting v(O,Z) = Gy , etc.,. and making the ., .

additional assumption that V is a function of coordinates onlys:
> = <y, [w'n-kc(a -® .+ - fe+ 7% - Blv> . (Gob)

Equaiion (31a) can be written in terms of G and F , and Ho can bev

eliminated in favor or H , to give the equation quoted by Schwartz: _
[H,G] ¥+ W'Fy - e(o,z)* = 0 " : . - (31b)

Since this .quation can also frequently be solved explicitly by the
techniques of Chapter III, the first order éorrections to ( Q) cen

be calculated exactly in 2 large number of cases. This result has

v IS »

Sk SR DT

been very widely applied to the calculation of the second order

B e
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properties of atoms .y many authors (see Dalgarno, 1962 Y. - ' R
% 4 3 'l"q' i F

C. Solution of Perturbm.'ion Eg_t_x_ations

. R

The methods of solving Eqs. (19) and (31) when W ia a one- electron

operator have been thoroughly discussed in Ghapter IIIA. 'Ihese equa-

tions correspond to.Egs. (3.1) and (3. 50), the only differenc.ea being

the notational ones: W'~ V' , (0 1)—5‘ v ) (0-2)‘9 *(2) P

€ 0,2) - €(2) x W’hen explicit solutions for W(Q’l) aid W(0,2) w

cannot be found, varicus approximate variational techniques -can be
used. The straightforward method,discussed in Chapter IIIB, is to use
the Hylleraas variation principles, Eqs (3.54) and (3.67). lﬁodificatians

have also been used (Karplus and Kolkér, 19632) and are discussed:- - ‘1'% .

b:iefly in Chapter XI.

e
~d

The only cases in wh:l.ch explicit formulae can be given for the

corrections' are when the equations are -one-dimensional or separable.:..::

In the one-ditiensional case discussed in Chapter III, Sectioh.Az,. theé

‘first order cgrrection 6(1’1) - can'be expressed in a form similar to .

Eq. (3.26) which applies to ground or excited states, namely

LD .__f‘? W(EDN()

5o dz (32)
* (2)' RN 8, T : bl rt s
'here.“ ey S ey o B pes, SR el o 3 v 'n
2 l..“ y
. a ) .
I e R AL R et e ~f',’urs.';"~ ‘. O o AL IR L I S
N(z) = 2 f VAT S . (34)
e Wl S0t L Tl BEEONE e kB Vet W S0 S

45 Fr 5 0T i s S end

A a:l.m:llar typa of formula ¢an bu derhred when H atul W ‘are aeparable

' in the same coordinate aysl:em (see Append:lx Py, SR RN e
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D. Expansion in Perturbed and Unperturbed Eigenfunctions -

" In this section thé expression of the first and second order.
properties {W)» and < Q> in terms of the perturbed eigenfunctions
‘Pk of H (single perturbation) and in t:erms of-the unperturbed
elgenfunciions *k' ‘of Hol (d’o_uble perturbati‘on) are presented.

We begin by considering the difference between fi;:st and' second
ordgr properties. VWhereas the expectation value of W for a particular
state q of a system with Hamiltoniar_l’. H requirés '.only a knowlefigg

of \Pq , namely
Ky, =LK g > (35)

the formal expression for the second order bropérty Q) in terms
of the solutions of H requires the entire spectrum of eigenfunctions
and eigenvalues. V'I.'hi can 'be ‘seen Sy‘ éxpéﬁéing | ‘x s ‘g:iven by.-Eq; (5) »
in terms of the eigenfunctions \Pk ar.’ substituting into Eq. (4).
The reédltiné .well knoﬁn expressi.on: has ex.;c':tly.the sax;le form as the

o 1

second order energy expansion Eq. (2.20) and is

<a) ok ey
Q 32‘— - . . . ’ -
Lop B Ro L s g

where

Wy = < PG> > (37)

the sum is to be taken to include integration over. the continuum, and
the prime indicates that states with ‘énergy Bq are to be omitted.
It is iustructive to compare thes: formally exact expressions

with the approximate expressions obtained when H = Ro + AV and we
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regard only the spectrum of the unperturbed Hamiltonian Ho . as known.

.By expanding the perturbation functions *(0,1) and *(0’21

- of Edgs.
(19) and (31) in terms of the unpevturbed functions and using

Bqs. (29) and (30) we obtain -

: _ ) w(;)vé-") ) L
<~w>q - w‘(l;) +27\§: —-—--9—2 e ) | (38)
. . ol _..k..q‘k‘ ;o e
: () ;(0) v (v(9y (0).,(0), (o) (0) (o), (o), (0) (o)
@, - zz _S__.lﬂ..,.zazz (Vak i "iq “'qk ki jq+quwkj Vie)
' 39y
’where.
(o) |
qu > <1'q’w-"f'q> g ' ;
"kj N <f_k”wj>.,’ _ka.<*q’wq> ¥ s ..‘40) . .
& - < *k:wj> 6uySvpWgy (11 kof exceptk =3 = ).

_The first order corrections due to the perturbation V ‘are effected”

through the matrix elements Vﬁj) in the terms of order ?\ .

There are two important and related second order properties of
electronic systems which we ghall consider in more detail to exemplify. -
these fermulae.“ They are the polarizability X of an atom or mole-
cuie‘and the Van der-Waals constant C 'fof r§§3xo§g range 1n£eraction
of two atoms or molecules. .. = ... ... .. o i Ll Sk B

The- opera:or ‘W for the polarizability tensor. is *he electrie

dtpole moment vector

AR G Ft R, PO IV RS~ R . |

_,’;fi'_, A _;,J 95.032-;




The leading correction for the perturbation V , which involves the

39

=Yg L DT T e

where e  and 1  are the charge (see footnote 2, Chapter X) aid
position of particle s , and the summation is over all part:lclés.ﬁ The
waan palyclaabiiity Sor & systen ih. state q , given by Eq. (36), can

be written (cf, Chapter X, where € is used in the sense of the E,

in the present chapter):

: e gk 5 ; TR o R T G
BRI L e |
where qu is the mean oscillator strength defimed by ' - .= - +v. . = o

e T %\xk 'Eq)|<9k’/‘-f?q>lz S

If the atom or moleculé is ‘:l.so‘ttdpic then = 7 ora ot T

S ® 20 TG vhen (g = Vo B> GO

an_d /&x -is one of the components of /'4 g D Y Mokl it LR

(o)

The zeroeth order approximation’ D(q to the polarizability of

(o) .
q |

a system based on an approximate wave fui;ictioh ¥
HartreerFock, which takes ina&leqtiaie accounf: of elec,ﬁron repulsion

“such as a

will be given by Bq. (38), namely . . '

™ % el

s A S S
'3 ol = E ARy LRl e s T S g
» q . . . i

5 . . J ' k ( eq ek) --:.‘A ' 1 ‘;',_‘:"'.. a1 00 A T o ”;_-. fois ;4.' -

FE 1
itk - F .8

two-particle electron repulsion terms, is given by
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' (0) (0) (0) (0) (o) (0)
q eq : ek)( eq ‘

i where vﬁg) 1s defined by Bq. (40) aud

- <wx~vj> 544, VR > P

The treatment of the Van der Waals constant C ‘is similar (see

Chapter X, Section €3). Consider the long range interaction of two =

ltde_ntical ators A and B in ground S states .ait._d'is‘tance R apart.

RO R R T e ey

The leading terms in the mulitipole expensimi of the interaetion potential
a7 s

is the two-particle perturbation

v
o lew

RN A R R

1 ,.a b NP T : : .
: W = ;3%-& o7 Ty T ' (48)

SR

WY

vhere /A,. - and };'Lb are the electxic dipole opérators for A and B

<and /“S: s /4- are the co:ponents along the molecnlar axia. c 19

e‘ingd as t:he coefficient of R -6

1n the expansion of r.he interact;lon
energy in powers of /R .

The exact expression for C in terms of
the gtqmlc eigenfunct:lonn \Pk i.é therefore :. .. -

fafar - g d? ke P

e ’Z’Z @, - Epe, - § )(nkn = i

Hovever if, as ig the case for all atoms other than hydtds;r,e’n; fa;iiird.iin'l;ié; B
atomic wave functions (°) are used then C has correction _ R |

terms of the same kind as (60) and 1nvolv1ng the same matrix

PR Y

elements. -3

Crahpe v ToanT

bans SR - v R LY 8 |
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. FOOTNOTES TO CHAPTER IV. ..

1. This is similar to, but different from, Eq. '(3.4), since here we
are degling with double perturbation theory, and . H involves "V

and not. W .

e
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V. GENERAL CONNECTIONS BETVEEN PERTURBATION TEEORY

AND THR VARIATIONAL PRINCIPIE . . ;.

There are many connections between pertqrbationf..heoryl and the
variational principle, some of vhich have been discussed in the pre- .
ceding chapters. In this chapter we will explore certain of these
connections in more detail.

Hnt we want o emphasize that the relationship between perturba-
cion theory and the variational principle is two-way. coneider some

quantity A for which we wish a perturbation expressicn, A -2 \’nA(n)

Ya

where 9 is the orxder parameter. Then, on the one hand » glven a

variational principle for A one can derive variationai principles

- for _the individual'!' A'(n)' . This possibility is obviously of great

practical :I.mjaortance; We have already discussed the case A =E , in
Chapter III and will discuss it further below. We would note however,
‘that one can do similar things {f A is a scattering phase shift or a

scattering amplitude.

. On the other hand the perturbation formula for A(o) +9 A(l.) in
fact provides a variational g. rinciple for .\ because the mark of the
latter is precisely that it yields errors of second order.l We have
already had one example of this sort in Chapter IV in discussing l;he
connection between f:he double-perturbation and Schwhrtz approaches to
the calc‘ulat:lon of expectat::l.oﬁ values. Another, more femiliar e::ampl.e2

ig the foiloni.ng: From first order peri:ufbation theo:"yfve know that
<'(0) ,ay.(o)) / ( yIP) ,*(0)> =B + 0(02) whence we infer that

. ol ' v
<P 2 L7, @> 1s stationary for first order variations of ]
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about the true wave function,.which is of course cc:n;l:et::t:.3 .As usual,

‘we use tilde to represent trial functions. "R s 25 e S

‘A, | Plertur ation Theory of the Variational Principle . -
Let us now consider the case A = E in some detail where, for

notational simplicity, we continuec to consider only a singlé perturbatioﬁ'
which may be thougit of either as AV or wH . Thus, we consider
the Hemiltonian h -

A= # + VK.

5

and the associated srationary expression 'J where
— P g .

= <$,(ff - n)v) » ...

For fixed ‘E one determine'; the opt mal t from JJ = 0 and then _ ;

one deteminea ‘E from J=0.

REERES e 53
We will symbolize this process by ‘

81=0,3=0. To derive vari.ational expressions for individual =

exponsion coefficients we simp! }' insert

Z" ™ - ® Zvng(}l) % - Zv"i‘“’..
into Eq.(1) and equate terms of like pover of ¥ to obtain the following

; ’ : s ST et
sequence of stat:ionary expreaeiona.l' o

39 2459, - "ﬁ‘°’>‘$‘°’> B i
LR R POy GOz (0)),,(1)>_,_< W (0)),<0)>

(3)

SRR B

e

AR

FEC
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' AL

' diffarent fron the approxim.\te *(0) furnished by S J (O) = 0

1D 2 CTOEDFDy 4 GOUR, - FDFD +7 D, - EOFO

<F w( FORDY GO, - FORNDD +FBk, - FOND
| W

1. Pirst Order Variation Principle
We w:lll now examine the content of each of these stat:lonaty

expressions in_tum. .Bquation (2) is of course the variational expres-

sion for the zero order problem and requites no further coment.

(a) gglves’ Variation Principle. Equation (3) 13 a variational

Principle for 3(1) . (1) is stationary for 'variat'ions of- 7(1) "and

FLEIPC

about tieir correct values. Thus 5§11 = 0 = 0 can

Pl 4
e

provide approximte 3(1)_ P '(1) and v( ) s the latter :l.n gen'.sral )

39 ..

Unt!.l recently this variation pr'nciple has not attracted any

attention. The reaaona are si.mple.

(:l.) In the calculation of the energy levels of an isolated ayatem

by perturbation theory . (ﬂ \){1 AV) onme naturally choosea
m so that i( 0 | and hence 3(1) are known exactly and one has no
noed fr 3P . i I e R e T
: ; (u) In the calculatiou of the effects of uteml fi.elds e
‘ﬂ = E ’ \’f{ -/LW) » very often 3(1) =0 by symmetry vhente, e =
(1)

once _again one has no need for J .

{iii) Given, as is usually the case, a definite but approximate
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v Le. a v(o) , then -3V 4 Likely to be of little help in
deteraining an optimal v( D becausc unrestricted variation of v( ) .
clearly yilelds an equation for \y(o) not w(l)

However, as has been pointed out recently by Delires-,s if we do not

know v( ) exactly and if one is interest:ed in <1|r(0) H1¢(0)> for

re,

some El , then thia variational principle offers fhe possibility of

'< A0 ,Hl\;i(o)) More specifically the resultant

LI CO RN ¢ VR ¢

an icprovement over

(1)
B will be correct to terms of order ¥ -¥

Houwever, this variatiomal principle has at least two drawbacks:

(o) Even for the ground state it is not 2 minimal princ’ple, only::iv
ga sl;ationary'priﬁciple;s :Thus what we have termed an improvement may .
in fact not be on. at ail, i.e. may not be numefica'lly more accurate, .. (i
and im particular one does not necessarily improve things by using
more elcborate trial functiona. | S

($) Related to this is the following: ‘we are allowed to vary
%'(0) and 'ir'(]') independently and this can lead to peculiar results, =~ =
In particular we may fix (;(0) (detérmined say from &J 0 . 0‘ 3
0)

3@ . ) and vary only the scale of '\F(l)' (i.e. weé write ';(1) =sp "~

and vary the‘v'parameter S ). One now readily finds that the optimal
‘ oy
FD 4 simply <-;(0),H1*._0)>' , i.e. no improvement.

-(b) Schwartz’ Method. One may regard the Schwartz méthod. (disc'ués"ed "1n

-Chapter IV and shown there to be equi\.alent to the Double Perturbati(m : j |
Method) to be a special case of the D*lves' variation principle in
which, for fixed w( ) one restricts the freedom of j( ) By requiring
.that ‘%’(o) _,w(O) and -?(1) - 1'(1) be of the same oxder, so-thaf the
error in 'E(D is of order '@(0) __*(0))2




'I'hi.s :I.a done in the follcwing way' wrii.ing ﬁ(]') = I’w 8 wé“.:have

the Dalgamo-l.ewia equation for F:

[";(o,s]v@ “ - (K - <v(°’,ffﬂ‘°)>)v(°’
o)

If now we write ¥ --'iﬁ(o) it :l.a' clear that the error in ;(1) ;

will be of tiha‘ same oxder -as l:haf Viln ?}"(0)_ 'L‘_:lf | 'F‘ | .s_at:l'afiea

4

O Y NSt |

[’f‘o’ﬂ @, 4 (R, - <¢<°) ; (o>>ﬁ(o) gy

& - . which is the'Sehwar’.:z condition. As Schwartz notes, one can also
derive this _.ation from a variation principle (see below), which

then can be used, if _necesaary, to effect an approximate solution. .

P o | Equa::l.on (4) is a variational principle for 3(2) .. tn this

general form it has not been used though it could have applicabllity
to exter_nal field problens wbere usuglly one does not know _-w(o) |

exactly. However, folluwing Schwartz, it is probably better to restrict

_‘;(1) ' m-v?(z) or‘ifollaw:l.ng- _Daigarnq, to use double perturbation
If '(0) is knoan exactly, i.e. .v,' ' (0) ~(°) = ‘E(o) ’

-,t_u 214 ]

'i(l) - 3‘(1) » them, so far as the numerical value of J(z) and its

behavior under variations of 'U( b are cpncerngd we may drop the_ last

Coat
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two terms whence 6J @ . 0, (?) = 0 .is identical to the Hylleraas

minim316 principle for E( ) and ‘7(1) e An eseential point here is
(1)

that, in contrast to the situat:ion with J

?(1) does yield an equat:i on for \y( D " Sim_larly free variation of E

7™ 4 J(Zn) (n)

3 free variwtion of

yields an equation for V¥ whence, 1f one knows the

(2n)

lower orders exact:ly, one can derive from J a Hy‘lleraas-like

variational princip1e7 which determ:l.nes an optimal ~(n) and an upper -
bound to E(Zn) . ‘
If on the other hand 1{1( ) is only approximate then the expression -

S?H = 0 with

- <7, (ﬁ’ ‘”)v‘n>+<vm(f{ D>

+{FD, (#, - FOND)y

wieh O 45O :ﬂﬁ'(o)) and & approximated by (F(?, f? (°)> 5,

can be used to determine an optimal ?«'(1) for a given ?(‘0) . Thia ‘

f_’“;(l) (1

can then be used in conjunction with J =0 to yield a

variational approximation to E(l) 8 Indeed if we write \p( D =‘2'"(°)
FOFO2 F5O

and make the approximation E then thie becomes
-exactly the method of Schwartz.l In this connection One shc 11d note
that £ree variation of '\?r'(l) without the approximation B(o) 5 "ﬁ;“n

leads to an equation vhich one can presumably not solve exactly si.nee, o

by hypothesia , one cannot solve the associated homogen us equation.

On the other hand one may hope to solve Schwertz' equar::lon (5).

s e Ry S B S Y T
= s { 7
3 ’




" B. Special Theorems for Variational Wave Functions -

1, Orthogonalitx and Related Theorems

J(a) etc. but since no new

We could now go o.. . and discuss
A questiox ; of prirciple arise snd the m.alysis becomes repetitive, we

will terminate the detailed discussion at this point and turn to

However s our variational procedutes may well provide us with a number
of stationary solutions which one would then be tempted to associate :

i with various states. 'i'he question then arises--will these several
w2 ‘ ' , g

* are slso necessary conditions ‘if the orthogonality is to be enforced

only by the variotional ptinciple, i.e2., if the sclutions in question

g I property-

Our baaic tool is the observation that if W and ?q arze

optimal trial fu,nctions then from &J =0 we have (varying 71’ but

not'v':- . _‘ : 2 o e it
| § =<” sipy - G REy @

: gnd (vary ing 7 but not 7(1 )

(5?,"“) <6 q’- '. ) - TR (7)

~ Prom now on we ‘will assume -Bp 1‘ i'q . Then we have the following

- theorem:

'another questiow thus far we haire been concerned with a single state.

solutions be orthogonal? In what follows we will, among other things’,.

derive sufficient "conditions for orthogonal'ity. We believe that they , .

ore 'no_t .é'grioti orthogonai by construction or because of some symmetry
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- *
(a) If 5$'p u‘yly';'q and '5?.‘1 fvvp are possible variat:l.ons of

the optimal trial functions then "Fp and \kq are orthogonal.
Proof: The proof is immediate. Simply insert the variations into

‘Eqgs. (6) and (7) and subtract tec find
r~ o~ d
@, -EpLF D = 0

which proves tho theorem.

From this follow as special cases, for example the orthogonality
of the exact V and 1" and of different solutions of the Rayleigh
Ritz method. .It is also of interest to make the following two remarks-
(b) Generalized Brilloui_.n Theorem: 1f &7V ‘9‘ 1{1&' where (‘5’ ,'i )

is a possible variation of the opt_imal trial function then

<‘y':ﬁ;q> - 0. T TN AL B

This is of course an immediate consequénce of Eq. (7).

(c) Off-Diagonal Hypervirial Theorems for Variaticnal Wave Functionss:
1f 8§ =AW end ST = iYW where W is a ti |
Jtp ¥ ﬁq V.q 'qu : ere Hermitian
operator are allowed variations of the optimal trial functions then

-it follows by subtracting Eq. (6) and Eti. (7) that

(Ep - i’q) <"FP‘7WQ> | = ‘( ";p: [ﬁ,ﬂ] ';q>

This generalizes an earlier result of Epstein and Hirschfelder (1961 )

which applies to the diagonal case p'=q.
From this for example one can immediatei_y infer, in agfeéﬁent'with
other authors ,9 that although all one-ele‘c'tr‘onf diagonal hypervirial‘

theorems are satisfied in the Hartree-Fock a‘pproxiination' for closed

AR
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_#4 - orthogonality to a certain order.

' one will have ortbogonality to first order but not in higher orders.

Vi) e

~ ghells (see Chapter XI), off-diagonal ones are not.

Returning now to the problem of orthogonalit:y 5 by expanding every--

thing in powers of 9 » We can derive conditions that variat::lonal

caloutaitons based oo $30 w T a £5® L uo yre1d -

This :ls of interest, for éxample,
in connection with perturbat:ion theory within the. Hartree-Fock formalism

(see Chapter XI)where in effect $(°) ’(l) »-“-- are t:he Hart:ree-

Fock apﬁroximations to t(ol > _v( )

s:l.nce the nanipulations are straight forward we merely quote aome
of the reaults. :
(d) 1f 5"(0) 1"'(0) 5'-(0) }1 1 vare allowed yarlatlons E

then from SJ(O)_ =0 we find <4-(0) ~§°)> =0 , i.e. we have orthof;-

-onality to zexo order. \ e
@ 1t 55 =qT? ama 5,,(0) -7

and if "';0) -1(0) and *(0) ai(o) then from 5 J( D . 0 we find

we have orthogonality to first order, L. e. (“' (0) (1) 3 -l—(?(l) (0) >
(£) 71£ 5,&(0) ,,,”(0) 5~(0) _,”(0) 5*(1) ..1”(1) and

J.p“) -y” are alloued variations aud if "';0) (0) £ e
(0) ;o), then from JJ (2) =0 we fint. we have orthogonality to

are allowed variations

ot

second order.

(g) A etc,

As one application of thes: results, it .folloﬁa directly in agree-

ment with other authors ’10 that_ in Hartree-Fock calculations ‘of say

the - (13) 14 and (1323) *S states of He as an expana:lon in 1/2.,1.1_;-,' '

These resulta, as noted are based on JJ(O) JJ(D = ose O .




71

It is aluo cléarly of interest to ask what happens if we use say the

Hylleraas variational principle, i.e. 6 J H. e, JJ B 0 where

B o_ .00 g _ o(D)(1) ~(1) <1) (0)y
3, = vl - 2wy + K ,(ff i

(1)’(‘;() (0))*(1)>
and a similar expréssion four 'JqH.,
From 45J_ph = &7 qh = 0 we then’ 1nfer :
L) o L 2(Dy (D). e - 5(0), £=(1)
0= Ky (8 - BBy + KFp LM - BT
and

0 = <8FV,#, - n“’w‘°’>+ (5% T, - E‘°’ g B

By use of 'ﬂv

<-' ;0) (0) > =0 we can then :I.nnnedi...tely derive, by subtract:ing the

() _ 2O, 2y ® =20 e

two expressions above, the follcwing l:heorem-12
(h) ;If 5'\}'1(,1) = 7(\7((10) and & f\iél) = V(‘{rl(,o) are possible variations
of thé opfimal trial furnctions iﬁ the Hﬁlleraas variational prin,cipl‘e
then we have otthogopalit:y to~f£rst: order, |

In a similar way we can show:
(1) 1If 57‘()1) = i‘)lw;o) and Agfln = :hzwl(’o) are alloﬁed v#ria-'- :
tions in the Hylleraas variation principle t_hen the off diagonal
hypervirial theorem for -W will be satisfie& to first order, :
_(j). If é"'.(l) = “l“*f,o) is an allowed variation in the Hylleraas
variation pr:lnciple then: the hypnrvirial theorem for W w:l.ll be .

satisfied to firat order.
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2. The Hellmann-Feynman gheorw

In this section we will discuss the Hellmann-Feynman theorem. :
within the framework of the Hﬁlera&s variational pz:'inc'::l.ple'.‘l'3
Dropping the state subscript, we will show that if J\r = 7’[ i
is an allowed variation where @ 1is the parameter in question then
the Hellmann-Feynman theorem is satisfied to first order:

The Hellmann-Feynman theorem states that

é OE[OT = (‘P, g—§ q.’)/(?, ¥ ». 1In zero order we have then
BE(O)
. T e
order then we find

ot :
= <v(0), s—gg v(0)> » which is certainly txue. In first: .-

P
) e T e

e 24, )
S = v 72 - <¢‘°’ TU> - ¥V 4957 s

»

0K, ~ ey 2F, ey R
. +<v @, 5727 +<w(.1), sq= v\ +<w(-°), g;,'-‘l’ v
i On the other hand we have E < \7(0) ﬂ (0)> whence o |
: & © © 34,
g_n_ g.v__ ;(1*(0)>+w(0) 4 gy__ >+<v<0> =t ‘,w))
R <

and the question is, are these two expressions equal?_u'

(0)

= and find (varyin;

We now put St =0 with §F 7 =¥

~(1)*) .

©
0= <*‘°’,<fq ) %"-— v D K - n“’n‘”)
- BRRReT)

(0) Py
+ (%L__ ,(1@ 3(0))‘.,(1)) +<‘,(1),(,( (0)) gt_)

i : We now use <ﬁ(°),f(°)) =0, o - B -“‘x:'

both ¥ and
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(0 ©) 3
7 (0), oV OE (0
(i, -E") S¢— = (a¢ ‘aco) W

which follows from differentiating ﬂow(o) = E(O)W(O) with respect

to (@ , and the zero order Hellmann-Feynman Theorem to write Eq.. -(10).?58

(0) (0)
0 = <V O, K S > + ¢ X, #y )

S, n oy
- GO 52 VP> - Y, 57260

24 . N
@ 552> [ FD L GO

which when inserted into Eq. (9) yields Eq. (8). Q.E.D.
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For the ground state we know .-'f(o) o v'i(l) + oooe _>_E(°) + \)E(I) + e,

If now our trial function is accurate to order v o then the left

9 2n+l

hand side will be accurate to order whence we will have

which implies i(zﬁz) 2 E(2n+2) « In short we will have minimal

principles only for even orders, and then only if we know the lower
orders exactly. |

0. Sinanoglu, J. Chem. Phys. 34, 1237 (1961).

G. W. Scherr, and R, E. Knight, Rev. Mod. Phys. 35, 436 (1963).

As has already been remarked in Chapter III, in many applications
2)

?H . ,'As’is clear from

our discussion, and as most authors have realized and mentioned,

© . O

has been used as an approxiaation to -B(

‘this is not a variational approximation unless ?
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S. I. Vetchinkin, Optics and’ Spectroscopy, 14, 169 (1963) ; and

F. Villars in Proc. of the Int. School of i’hycs. Enrico Ferni, Course

M. Cohen and A. Dalgarno, Rev. Mod. Phys., 35 506 (1963)

D. Layzor, Phys. Rev. 132, 735 (1963)
C. 8. Sharma and C, A.~Coulson, Proc. Phys. Soc. 80, 81.(1962).

A different theorem (with much 'weaker_ conditions) is statedoy S ¢
R. E. Knight and C. W. Scherr, Rev. Mod. Phys. 35, 431 (1963),..

Appendix II, but this in fact is the theorem which they prove.

For the ordinary variational principle 83 = 0 and hence by

inplication for 5'J(°) = &8J ) ... 0 the problem hes already

heen discussed by A. C. Burley;, .J.’roc. Roy. Soc. A226, 179 (1954)
who shows that a sufficient condition is that the i:rigl function

not depend explicitly on the parameter in quest:io::u.~ :

They are of course triviallf equal if ‘ffo , and hence i(o) ,. 15

indepondent of & . For a further diaousaion of this caoo-see
R, Yaris, J. Chem. Phys. 39, 863 (1963). They are also of course

equal 1f FU 4D |

Here and in what follows Y] in a general way, symbolizes a small : |

quantity. It need not have the same value in differont variations. i

Noto also that since J is homogeneous ‘the variat:ions

ﬁ Yzw and 53’ VUV are, in effecr., always allowed._‘

Thus all conditions are to be underatood as being modulo auch

/

variationo.
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VI. THB FOI’IM AND FOP-VIM FAST CONVERGING ITERATION ‘PROCEDURES

As we have discussed in Chaper II, given the wave function correct N

n-l-l

to 0( }n) we can compute the energy correct to 0(7. ) . Although

this is "better" than computing the energy only to O( ;Ln) p this process

b2 7 '»3

’ ia not rapidly converging since the energy is only improved two orders

in A for each additional order in the wave function. v- In thiu Chapter

P

we present 'two"procedurea which are much more’ ra'p‘idiy \con\\rer'.g"'ent:'  the B

First Order Perturbation Method or FOPIM, and a slightly improved version’

called First Order Perturbation-Variation Iterative Method or-FOP-VIM.

In FOPIM, the wave function through the first order is used as the-

zeroeth order function in the calculation of an improved first-order.
function. The perturbetion potential for;this new calcu]:ati:on___ie
proportional to 1 .+ This process can be iterated and ea.ch time the
new perturbation potential is proportional to the square of the preyious
perturbation potential.l Thus, after . iterations, the energy is ;,.- ‘
given accurately up to terms of the order of K raised to the (2)
power. For example 3 after 5 iterationa the energy is accurate up to
terms of the order of 7\“ .~. | '
In FOP-VDI, following Dhlgarno and Stewart (1961 ) s the perturbed
wave function is taken to be the variationally best linear combination
of the zeroeth order and Rayleigh-Schrodinger first order functiona.. e
This perturloed;variational funct.ion isV then '{;.ﬂ;ei; 'to"be the zeroetn-
order wave function for the calculation of an imprwed perturbed-vcria-

tional function. whereas POP-VIH may have only a modest advantage over

FOPIM for non-degen'er_ate energy..levels 9 e show in Chapter VII that the

basic notion of FOP-VIM is very uaeful for degenerate or almost degenerate




Schrodinger equation H Yy = &V . The Hamiltonian for the perturbed

77

energy levels.

We start with a trial wave function V¥ which satisfies the

system is H = Ho + AV . The firgt .‘order wave function is *(1) =Fy .

The expectation value of the energy corresponding to the original trial Y
function is & (0) as given by Eﬁ. (2.15). The perturbed normalized

wave function through the first order »13 W (1) as given by Eqs. (2.13)

and (2.14). The expectation value of the energy. corresponding to W (1)

is given by & (1) of Eq. (2.16). vaeryt‘:hing up to this point h=s '

been discussed in. the ﬁreceding chapters. The follcwing treatment is

somewhat novel.

- FOPIM

The wave function \P(l) satisfies the Schrodinger equation - . -

WD = & )Y o W

where
2 (1), | o -t
B = B+ ALLAE F R w49,

The Hamiltonian for the perturbed system is then

H = H(L) + A%y : | 3 ;

wﬁera J’
e kB s T S '
vy - K= S B

Now we consider the new perturbation problem in which W serves as

‘the zeroeth order wave function and 12V(1) is the perturbation

T T AR A AR S B PRSI S e
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potential, Note the 22 plays the same role in the new problem as
A plays in the original problem. The new first order perturbed wave

funét ion is

Doy = rovm S [c}

where the function F(l) is determined by

[+

[ro.]¥@w = ow - ePandm ©®

" The methods of solving equatioﬁs of this form are discussed in Chapter
“III. Thevspécifi.cation of the .F(l) is completed by the requirement
‘ th‘t [ -'...:"

LYW FOPM) =0 - | &)

square . . :
The /norm pf 7(1)(1) is designated as 's(l) P

PLIOR TORIEN 160y SIS (8

Using the first, second, and third order perturbation equations for the

new perturbation problem,

€M =Pw,ymwnd =[8w -g@m]/a2 o

€Pw = <o, IWEWVWD ) o

P = Lrapm,vwrarom) - €Pwsw  an

We can ndv define the second iterated nomiized wave"»function

v = [1+ Rl's(l)]-" a+ aZaNY@ 00
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The expectation value of the energy corresponding to V¥(2) 1is

24 ey + 25y
1+ a%s@
. | - ' (13)

. B(2) = vQ,m@> = €@ +

For exactly the same reasons the £ (1) is accurate up to terms of the
order of 7\4 , it is apparent that E(2) is accurate up to terms of
the order of AP .

The function V¥(2) can now be used as the zeroeth‘Otdef.ﬁavé
function in a new perturbation calculation. Indeed, after _(n+1}

iterations we have the normalized wave function

| 3 |
var) = [1+ 2%%s@] T @+ A%FE)vm )

p Here, because of printing difficulties, we use the notation a = - oy
square oo, ; :
The S(n) 1is the/norm of ¥ “(m) ,

(3

s

<r@y@) F@y@) = s@ )

The function F(n) satisfies the inhomogenous partial differential

equation‘

[r,e]vm = [ved - €Pw] v (16)
together with the requirement that
v Faym P = 0 | o an

From the first, second, and third order perturbation equations for this

perturbation problem it follows that - A
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H

€D = ¢y, VF@Ym > | | (19)

P = Lr@y@,vor@ym)> - €Pwsw o
The expectation value of the energy cotresponding to. y(n-l-}) is

7\23 6(2)( ) + 138. §(3)( )
.1+ Z S(n) -

E(ntl) <v(m-1),n¢(nrm> . E(n) +

e
Since 73 in ‘the. present problem’plays. the same role as A in the
original problem, 1t followa that since 8 (1) is accurate up to
terms of the order of 7\ s the value of. I!(n+1) is accurate up tﬁ |

terms of the order wf h

The function ¥(pl) satisfies the Sihrdiinger eqastion

B @) ~ By @)
’whe‘ra _
L 2a (1) - IR
H(n+l) = E(n) + M o (23)
1+ a‘s(n) |

The Hamiltonian for the perturbed system is then

H = n(u+1‘)+'2.2'v'(n+1) e 15 S g TNy (28)

'._.' - .A.

~ where i el o e g

V(n'l'l.) _(_)_L(n) e E (1) (_)J XL - (25)

J\‘tfm)
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The iteration scheme can then be continued through the rext step.

. 7 FOP-VIM
Thelxlaert:urbed wave functions can be improved still further with
very littleA efforf.:.2 This involves the coupling of the petturbation
and variational techniques. Consider in place of ? 1) , -_the'nprmalized

function
Aw - [+ 2?1 asraamy a@o

Here 8 = {Fy,Fy>and ©f is a parameter varied to make statiomary
" the energy E'(1l) = <'X(1),HX(1)> . For this optimum value of O(,

the value of E'(1l) is given by the secular equation
o e'<o> - E'(1) ate@
(27)
Of the two roots to the secular equation, the only :om:: which has

physical significance for our problem corresponds to .E'(1) approaching

£€(0) as A approaches zero. ‘Thus,

€ _ Mcs)‘,[ apZs[e®1® e(zr_'; J
E'() = £) + [ 55 A5 1 +_'{1 +[ o) 7\.6(3)]2

(28)

The improvement in the enmergy obtained by this variation of o is :

given by the expansion in powers of A , 4 ' | ’

3712 (3 -
B'() - € = A -&E(_"’—]’—+ A’ %g(-—.‘,)]lz- zse(” +oee (@29

O " L AR A MR A S AT L,




WL A

% X 5

3 2

P .

2 o -
# A8
8
L P o - — v I C— ac

o
&
-2
2
: g o
*I
-
g
; B

. 82

»'l‘h'e 6ptimdm vah;e of & is EE'(I) - 51(0)][7'\'2'6,(2)3 = , or

expanding in powers of A,

G e €O ) S
“'1+ﬁea) én - 8] ke i £30)

“Clearly, in much the same manner as in FOPIM; the "X n can be '
uged as the zeroeth order wave function to generate a new first order

function. The 'X(I)A satisfies the Schrodinger equation

Xw = EoXw - - o . L @D

whe?e . y
o 2. (1) t LT A R
l___J&;J_g)
o + g BT AgaeBentadly

The Hamiltonian for the perturbed system is then H = h(})_ + ._z.zv' (1)

2

where"'
v+ Pt o] - @1Eened” on
From B‘l;. (31) it fcilowi: th&. 7\-1(1- “) :I.a zeroeth order :l.n A .'
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'POOTNOYES TO. CHAPTER VI. ©. & . 7uvi'ei’ i

; 1. J. 0. Hirschfelder, J. Chem. Phys. 39, 2009 (1963). There is. a

variety-of other iterative procedures that have been proposed:to
‘take advantage of thiﬁ rapid convergence. The most noteworthy of.
these are L. Biedenharn and J. M. Blatt, Phys. Rev. 93, 230 (1954);
T. Kikuta, Prog. Theo. Phys. 12, 10 (1954) and 14, 453 (1955); and,
‘R. A. Sack, Univgrsity of Wisconsin Theoretical Chemistry Institute
Report No. 30 (1963). in additiom, P. 0; Lowdin; J. Molec. Spect.
10, 12 (1963) has.developed an iterative perturbatiOn-vgriation
procedure for solving the pertu:ﬁeﬁ Scﬁrodiﬁger-équatiﬁé by parti-

tioning the seculsr equation. . .- .. - I e

2. A. Dalgarno and A. L. Stewart, Proc. Phys. Soc, (London) 77, 467 @

(1961). A similar procedﬁre has been used in connectidn_with the

Brillouin-Wigner perturbation method by P. Goldhammer and E.
Feeaberg, Phys. Rev. 101, 1233 (1956); and by R. C. Young, L. C. -

# om0t

Biedenhnrn, apdlB. Feenberg, Phys. Revl'lgg,‘iISI:(1§57)Q # e
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VII, DEGENERATE OR ATMOST DECEFERAIE ENERGY LEVEY. PERTURBATIONS

Non-degenerate perturbation theory becomes inapplicable ﬁhen two
ot more energy levels lie clcse together and interact strongly under
the in:zluence nf the perturbati-n., An extension of the FOP-VIM analysis
of Chapter VI suffices to show the explicit effect of some quantum
state k on the q-th state under ccnsideration. Let us form a tri;l.
wave function § (1) as a linear combination of *k and 'x (1) ,\ as

defined by. Eq.. (6.26),
{>qc_1) = Xq(n + Nor, 1)
The constant C can be adj‘uste‘d gso as to optimize the energy
= <¥ (1 n%(n)/@ w,gm> @

subject to the condition that, as A approaches zero, Eq approaches
€ q° In this Section it is convenient to use the notation:

. .
(X);'.j - (-vi,xvj) . Since *((1) = Pq*q , it follows from E_q. (2.17)

that

-1
Fleq =, Diq L& - €] ©)

The constant § cbrrespondmg to the physically significant root of

the secular equation is
(3)
C = [ Gk] re(l) {eq- Ek}—z;(Lz)-.'-(qu)qk"'x['“]"'“‘
| L. @

Expanding the energy in powers of A ,

'iq = 8;(1)+;\4 c%_ ek]-li[‘_e‘(ln _{eq- §€(2)+(F v)qk

(3

NP o P

A
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Herxe Ea(l). is given by Eq. (6.28). -Since E&(l) 13 accurate through
terms in 713 it is not surprising that the first corrections to E;(l)
should be propertional to ?\4 . From Eq. (5) it follows' that
T >z £ € > € and B <E'(1) if € < €
> 1: i > < . F t
Bq > By 1~ 'k q <ED Bq < &g+ For the
ground state or the lowest energy state of a given symmetry, the energy
is lowered by the interaction with every other state. If |
iﬁq - E:l(l)\>‘x"l(1) - E.q(O)‘ , the expansion of iq in powers of R

(as given by Eq. (5)) is not longer possible and the non-degenerate

perturbation theory becomes inapplicable.

The usuél Rayleigh-Schrodinger method can be exceedingly complex
and difficult to apply to perturbation problems involving degenerate or
almost-degenerate energy levels (see Dalgarno, 1961 ). Greater
accuracy and far greater simﬂsicity can be obtained by the following
procedure: DE-FOP-VIM, whicﬁ.is FOP~-VIM generalized to apply to the
degenerate and almost degenerate energy levels (Hirschfelder, 1963 ). °

We may wish to consider the effect of a perturbation either on: a s
particular degenerate emergy level or the effect on a tightly packed
group of degenerate or almost degenerate energy levels. :Since. the
states corresponding to different energies may interact under the °
influence of a perturbation, the iarger the number of interacting
states which are explicitly considered, the greater is the éécuracf ;
of the calculations. o .

The first step in the DE-FOP-VIM is the‘détérminatioﬁ'of the .
Pstarting™ wave funct:lons.1 Foxr each of the 'ni 'degénerhﬁé energy

states Gk under consideration, we are given a cbmplete' set.of. -

sy il




l
|

7

L,,\m.«mmqmmwsﬂm g 7

B A A AR AT L AT 35

i O S B R

86

linearly independent eigenfunctions "¢k1;’.‘ T q’knk

Hamiltonian Ho « Thus, vliod)k @ - ek*k@ . The Hamiltonian for the

perturbed system is H_+ AV . The "starting” functions are -
Byt
vy
a = ) St (6)
- Tket P-]_ dP kP

The constants a_, g are chosen to diagonalize the perturbation matrix

so that

for the unperturbed

e Kl My g > = "sxp Ve o sk ™
This automatically makes the different ¥, orthogenal, ' h
e @> =0 ,x¢ @ ‘ (8)

If each of the eigenvalues V of the matrix is different, the
. : ket ;kol

degeneracy is rzmoved in the first order of the perturbation and the
choice of the a“p is determined to within a phase factor. If, om

the-othet hand, the eigenvalues for the energy matrix are not all
different, the a_“g are not completely specified. For our purposes,
in contrast to the usual Rayl.eigh-Schrodinger treatment, any choice of
the a“@ compatible with Bq. (7) is sufficient. This is Aone of the
principle simplifications of the DE-FOP-VIM.

Corresponding to a "starting™ wave function 'k o« Ve can define a

function l'k o such that Fku*kd . satisfies the first otdez; equation,

(!lo - ek)rkot'kt + [v - Ve ;k«]*koc ‘=0 (9)

The methods for solving equations of this type are discussed in Chapter |
III. Any solution of Bq. (9) suffices provided that

Fwtk“ satisfies

2050, S
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the usual boundary, continu:l.ty, and integrability conditions required

PR S
i
i

Cree = Fre Z Pocp Vicp S s, AN
g=1
for atbittary constanta bc( 9 is also a solution to Eq. (9) does not
cause us any concern. | | .
Now we are ready to consider the effect of the'éert’d‘rbetijo‘n on a

set of n =an energy levels €k . We fix our attention on those

petturbed wave functions \I’q whose energiea Eq approach the values

of the ek in the limit as R approaches zero. The first approxima-

tion to \Pq can then be written in the form

*qu) - Z Z‘[ skat A Kq;ko( Freot | Yiee 1)
ol=1
The constants Jq,ku and Kq,kd are chosen so as to normalize q(]‘)

and optimize the nnergy E q(1) =< Wq(l) SHY q(l)) subject to the
condition that Bq(l) approaches the value of one of the €k in the
limit g8 A approaches zero. The optimum values of Eq(l) are given

@8 n of the 2n roots of the secular equation

A B
Bt €

= 0O (12)

whare A » B s and &€ are the n by n dimensional sub-

matrices with the elements
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Bk“ ;k'p = < *k“ J@ktp ‘rklP ) - ‘E(l)<*k“ ’Fklp *klp> (1’&)

%acserg T <_Pku"ko¢’m'k'p*kvp) - (1) (Fk“*m,rk.‘pvl;;b) (15)

-The Lowdin (1963 ) partitioning technique is particularly well suited

to the solutibn of such secular equations. The values of the Eq(l)

obtained in this manner shoul,d be accura.e through terms of 0( A)
The v (1) can themselvea be used as the zeroeth order wave

functiona for a new perturbation c.alculation in much the same manner

as in the FOPIM or FOP-VIM procedures.

-
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. " FOOTNOTES TO CHAPTER VII

1. The advéntage’of -det:ermining the "c&f:':ect zeroeth order™ functions

Vot 18 that the first order perturbation energies are obtained

at an early stage in the calculations. If P h'ov‘wever; one wishes
to avoid this step, the ¢k°€ can be used in place of the *k."‘

in Bq. (10) and beyund provided that Eq. (9) .is" .‘replac'ed by

M, - EPFy e vq’kaf'-»zvk’c;k«:e(bkﬁ =%, (5%
/=i T
whére vk,d kot = <¢kﬁ’v¢k°‘>f Bquation (9') ‘fo-llo.w? from

the multiplication of BEq. (9) b a
P q. (9 y Sol

» summing over o , and

making use of Eq. (6).

&
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’ VIII. OFF-DIAGONAL MATRIX ELEMENTS

As we have seen in Chapter IV, the Dﬁlgarno Interchange theorem
is often of decisive importance in n;aking practical ;he calculatipn of
the first order .correcl:ions to the e‘xper;.t:ai:ion values of one-(pa.:r.ticle
operat.ota.. In this chapter we show thgt a sinﬁlar theore;n holds for

off-diagonal matrix elements.l

A, General Formulation

In order to compute the matrix element < Tp,w?q) for a
Hermitian operator W between the eigenfunctions \[lp and \Ilq of
two Hamiltonians llp and I!q (poséibly, but rot necessarily, identical),

we consi:ier the equat:lonaz
et peve = 88 5 | | - o

BB tpsed < ER 2

- where s 'is an arbitrary complex number.

Introducing a 2x2 matrix notation we can combine (1) and (2) into

HE-22

where
. Hﬁ ,.ISU' L E _ EP 0 N - §P |
ﬁ. /"‘*" % | = 0 E.q , i §¢:

Bquation (3) is now of standard Hamiltonian form, and thus, with

suitable notational changes, we can take over many of the earlier

results in this article. In particular, if we write I{p = upo +* 7\vp »

"
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Hq = qu +;wq 3 ﬂﬁ H + AV +}&E__ ¥ £= lco 0) L ’0)4' )11&(0’1)-!- soe
’ and gﬂ g(0,0) + Zé‘o 1) + /*g(l,ﬂ) + ¢++ ., we have the identity
. <¢(1,0) “1;(0 0)> +(¢_(0 0) (1 0)> <¢(0 1) (0 O)> +<‘¥(0 0) (0 1)>
, (4)
where
(Eo - g(o,u))i(o,O) ‘— 0 (5)
(g‘;,_ goso))g(l.t‘p a .1.(v= - 5(1,0))2;(0,0) - (6)
with .
(o, 0) (0 0)
. '} R'A w 0
L0 < > ('0 o 0,05 "
| = | 0 <¢q 2 ,Vv | > ¥ , .
s ¢ (020) .. (0,0)
s{V W) .0 ‘ _
e(q’l) - { P : q > ‘ '
¢ N RN

and vhere we have normalized in such a way that

L

R E R b I A RIS IR A el IR OO B S

For s =1, the left hand side of Eq. (4) is simply twice the
s first order (in 3 ) correction for the matrix element (4 \"2 ,W*P') »
and for g = -1 it is twice the imaginary part since :
{0,0) . (1,0) T (0,0) . 401,0) il N
o a J oo’ = + ? see
‘Yp - ?P ’{'p : : and ‘l’q *q 3’#q +

‘The right hand side of Eq. (4) then iﬁfoms'ﬁé‘ft‘xéé' we can equally

T BN BRI
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well evaluate these corrections by solving Eq. (7) rather than. Eq. (6),
i,e, we have an interchange theor. We will discuna the solution of
(7) in Section C below. o . IR ; -
B. Variation I"ri'n'ciglea .

Equation (3) can of course be derived from the variation principle

SI =0 where
<Ep-28>

We can carry over to the off-diagonal case much of our earlier discus~-
sion (Chapter 1)} of connections between perturbation theory and the

variational principle. In particular, writing ﬂ- H + )LW »

g ki 2(0) +}‘_2(1) 4 «e+ and gug(o) +y.§(1) + +++ , the varia-.

tional principle 5.1(1) =0, J(l) =0 ,-J(o) =0 with -

3O = ¢ §‘°’ & - l,(o),§<o> ¥

' +<§(1) (H ’i(o));(o)>

givesg us, for s =1 , a variation principle for twice the real part

of the dee"red matrix element and for 8 = -i with a variaticm . |
principle for twice the imaginaty part. These are, with appropriate
notational changea 3 exactly the variational principlea given by l)elves2 .

and have the advantages and diaadvantagea " already discussed in chapter - 3

V, of his variational principle for diagonal matrix elementa. S | Y

further, in analogy to the Schwartz procedure for diagonal matrix
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elements, for a given %( ) we constrain é(l) so that §(0) gm
and 2(1) é(l) are of the same order (this is tim approach in
effect followed by Borowitz ) then, of course, as in the diagonal caoc;,
one arrives at results quit'e equivalent to those of our double perturba-

tion approach.

C. Separa‘ ion of Eguations for One-Electron W

For W a one part:.cle operator, we will show that our problem
reduces to the solution of one electron equations in the special case

for which W(O’o) and #(0,0) are single determinants The mel:hod
(O’Q), is |

(0,0)

nor -
nor ¥

is obviously extendable to the case where only one. of the ¥
a single determinant. The case ‘where neither *(0 ,0)
is a single determinant remains to be investigated. ot

Let us consider then 17( 0 ohe @1(1) 4’2(2) see ‘f (N)

(0 0)

and
A-f’lu) 992(2) e P where R is the antisynmetrize.tion
operator and where we assume W(O’o) and w(o 5 ‘differ by only a .
single spin orbital - {the case where they differ by more than one is
much simpler in that E(o’ 1) =0 ) Since a11 the operators in 7 :

are symmetric in the particles, ve clearly may write W(O 1) = A.‘x

whence, singling out one component of Eq. (7) in detail, we havo
¥ see = - - aew . - -- . . ' :oo-, > : : . V-'o-o-o ‘ o5 1
Sty i T _9("14,*' e T 791(..1)_‘?2(2.) S

+s <4>1,w 4’1} 4’1(1) -sz

AR AR e 54 b

(I

Here nop -Zhi 5 g; »0) aZe.i . Also we rieed h f (1) = el ?1(1) :
s i 1 : P < ...-_‘ ]

(we will assume, Zor simplicity, that Hop ;'Ho a ) . We :{ow_qbserize

B T e
b b ": iheest iy 3 v
A3




tl‘m..t.we' can write 'Xp = fxpl -I- fxpz_ where
(h, + hz'-l-f" - e --eé - "")zpl-".' sW 4’1(1) ‘?2(2)

+ a(«Pl,w PR -chz)
and

(hy + By +ooe =

o = og = ) Upp = - 8wy kg ¥ ee) P (D) Py o
thé. essent'ial‘point being that the right hand sides of each of the last
“two equations ar’e;orthogoml to the solﬁtion of f.hé homogeneous equa~

tion, and r.herefore l:he equations are conaiatent:.

The teduction to one electron equat:lons 13 now . immediate, namely
- .__Alm Py +or Py
% ® ?];(1) Az(Z) P4(3) ?u(n)"'-i-' P, ?zcz)as(a) .. ..'_ TRTE
where

(by ~ "J._)‘é“l o ““’1‘7s +s <"1"'1"’1> 9’1

(hy + 2 - e)A, = - _.z*?z'l

Further reduction deﬁ:e;&a on the part;.icular form of 'w . Note also that

if V isaone part,i:cle operatoi: '_(aa‘it'.is wii:hiq thé ﬁ&rtree-rock

formalism), then ‘sz ‘,'.does not contribute to the right hand side of @
(4) and our vtﬁeory, ‘as it must, becomes identical to that of Cohen

and nalgsrno 1

Finally we rematk that s as with the d:l.agonal case, var:lational

L
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1 : procedures are also @vgilabl,e_ to yp_mgo;@:e, the scolution of Eq. (7),
:lie stationary expression being ,jt_iat the:'Hylle;m-_fgm_-,: . /
- 2%(0;1) (0,0),~(0,1) »(0 1) (0 1),,(0,0
. <O, @, - g_’)t’>+< (w.’)v”>
% ' [eleglea sSe -t g
§ ¢ ! ¢ LR
(]
Lol
:
’ :
]
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POSTHOTES TO CHAPTER VIIT
ezi-chm the Hartree-Fock formaiism this has been shown by M. ‘Cohén,
and A. Dalgarno, Proc. Roy. _._ASoc. {London) &27_5,, 492 (1963).
geneta.l,‘ raaulﬁ to be derived in this chapf.er l:&s also been deri;ied

by 8. Borowitz (private communication).

-Such equations have firsi been discussed by L. M. Delves‘,i Fuc. Phys.

45, 313 (1963).

We ignore possible complications dve to degenmeracy. It often is

the case th : W is ®diagonal™ in the sense that given '(0 0)

then . £ *(O ol ,W(o ,0) > differs from zero only for ome *(0 o8}

0,

of the degenerate set, and similarly given t a unique

t;o’u) is singled out. We ziso assume (?1, ?1> =0.




